4,940 research outputs found

    Quantitation of buried contamination by use of solvents

    Get PDF
    Experiments directed at determining the potential of reclaimed silicone polymers for reuse are described

    On Internal Fracture of Solids

    Get PDF
    Initiation and propagation of internal fracture in solid

    Quantitation of buried contamination by use of solvents

    Get PDF
    Spore recovery form cured silicone potting compounds using amine solvents to degrade the cured polymers was investigated. A complete list of solvents and a description of the effect of each on two different silicone polymers is provided

    Efficient orthogonal control of tunnel couplings in a quantum dot array

    Full text link
    Electrostatically-defined semiconductor quantum dot arrays offer a promising platform for quantum computation and quantum simulation. However, crosstalk of gate voltages to dot potentials and inter-dot tunnel couplings complicates the tuning of the device parameters. To date, crosstalk to the dot potentials is routinely and efficiently compensated using so-called virtual gates, which are specific linear combinations of physical gate voltages. However, due to exponential dependence of tunnel couplings on gate voltages, crosstalk to the tunnel barriers is currently compensated through a slow iterative process. In this work, we show that the crosstalk on tunnel barriers can be efficiently characterized and compensated for, using the fact that the same exponential dependence applies to all gates. We demonstrate efficient calibration of crosstalk in a quadruple quantum dot array and define a set of virtual barrier gates, with which we show orthogonal control of all inter-dot tunnel couplings. Our method marks a key step forward in the scalability of the tuning process of large-scale quantum dot arrays.Comment: 8 pages, 7 figure

    Transition Mechanisms of Two Interacting DX Centers in N-Type AlGaAs using Reverse-Bias Deep Level Transient Spectroscopy and Temperature-Dependent Pulse-Width Reverse-Bias Deep Level Transient Spectroscopy Methods

    Get PDF
    The reverse-bias pulsed deep level transient spectroscopy (RDLTS) and a new temperature-dependent pulse-width RDLTS (TDP RDLTS) technique are reported to study the electric-field effect on carrier emission rates and the direct interaction between double DX centers recently detected in the Se:Al0.6Ga0.4As N confinement layer of the AlGaAs/GaAs single-quantum-well laser diodes. Traditional RDLTS measurements, with constant pulse width tp, prove that the two DX centers, Et1 and Et2, have strong direct emission interaction. Furthermore, the new TDP-RDLTS technique enables one to evaluate this direct transition time constant. Possible mechanisms for this interstate transition at different temperature ranges are provided and the new broadening effect due to this interstate transition is also reported here for the first time. Field-enhanced emission rates are calculated

    DNA packaging and the pathway of bacteriophage T4 head assembly.

    Full text link
    • …
    corecore