6,327 research outputs found

    A First Comparison of SLOPE and Other LIGO Burst Event Trigger Generators

    Get PDF
    A number of different methods have been proposed to identify unanticipated burst sources of gravitational waves in data arising from LIGO and other gravitational wave detectors. When confronted with such a wide variety of methods one is moved to ask if they are all necessary, i.e. given detector data that is assumed to have no gravitational wave signals present, do they generally identify the same events with the same efficiency, or do they each 'see' different things in the detector? Here we consider three different methods, which have been used within the LIGO Scientific Collaboration as part of its search for unanticipated gravitational wave bursts. We find that each of these three different methods developed for identifying candidate gravitational wave burst sources are, in fact, attuned to significantly different features in detector data, suggesting that they may provide largely independent lists of candidate gravitational wave burst events.Comment: 10 Pages, 5 Figures, Presented at the 10th Gravitational Wave Data Analysis Workshop (GWDAW-10), 14-17 December 2005 at the University of Texas, Brownsvill

    Laser desorption/ionization coupled to FT-ICR mass spectrometry for studies of natural organic matter

    Get PDF
    Laser desorption/ionization (LDI) was investigated as an ionization method for Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) studies of natural organic matter (NOM). Using International Humic Substances Society standards, Suwannee River fulvic acid (SRFA) and Suwannee River natural organic matter (SRNOM), LDI was found to ionize a very similar set of compounds (>90% of molecular formulas identity) to the matrix assisted laser desorption/ionization (MALDI), while producing higher quality spectra. A comparison of electrospray ionization (ESI) and LDI spectra showed that different types of compounds are ionized by these methods with only 9.9% of molecular formulas common to both. The compounds ionized by LDI/MALDI belong to low oxygen classes (maximum number of species for O7–O9), while ESI compounds belong to higher oxygen classes (maximum number of species for O14–O16). Compounds ionized by LDI can be classified as aliphatic, aromatic, and condensed aromatics in approximately equal measure, while aliphatic compounds dominated the ESI spectra of SRFA. In order to maximize the coverage of molecular species, LDI, as a particularly convenient and readily deployable ionization method, should be used routinely in combination with other ionization methods, such as ESI, for FTICR MS studies of NOM

    Congress and Deregulation: Federal Legislative Issues Past, Present and Future.

    Get PDF
    I am Bill Robinson, and I am pinch-hitting for Mark La Fratta. Mark did something that caused him to have to go to Gary, I am not sure what it is. Perhaps, Mr. Brown will be able to tell us later on. In any event, it is a pleasure to be here. A couple of Saturdays ago, I was out sailing in an old boat I have, and we had wonderful winds. We were wasting in an area on the Rappahannock that I was not very familiar with, and we were just about to make our last tide in the fifth of six legs of the race, when we ran aground so badly, and so far, that it looked like one of those photographs after a hurricane, with the boat keeled over. Eventually, somebody came by and yelled over from his boat, It sure is a lot easier standing up at a podium in a courtroom, than what you are doing, is it not, my boy. It was a bailiff in the Federal Judge\u27s Courtroom in Richmond, and the general proposition he used was correct. And, it is with a little trepidation that I come because you all are experts at this, and the panelists are certainly experts, and I am simply going to be introducing them

    Quasistationary binary inspiral. I. Einstein equations for the two Killing vector spacetime

    Get PDF
    The geometry of two infinitely long lines of mass moving in a fixed circular orbit is considered as a toy model for the inspiral of a binary system of compact objects due to gravitational radiation. The two Killing fields in the toy model are used, according to a formalism introduced by Geroch, to describe the geometry entirely in terms of a set of tensor fields on the two-manifold of Killing vector orbits. Geroch's derivation of the Einstein equations in this formalism is streamlined and generalized. The explicit Einstein equations for the toy model spacetime are derived in terms of the degrees of freedom which remain after a particular choice of gauge.Comment: 37 pages, REVTeX, one PostScript Figure included with epsfig; minor formatting changes and copyright notice added for journal publicatio

    Statics and dynamics of domain patterns in hexagonal-orthorhombic ferroelastics

    Full text link
    We study the statics and the dynamics of domain patterns in proper hexagonal-orthorhombic ferroelastics; these patterns are of particular interest because they provide a rare physical realization of disclinations in crystals. Both our static and dynamical theories are based entirely on classical, nonlinear elasticity theory; we use the minimal theory consistent with stability, symmetry and ability to explain qualitatively the observed patterns. After scaling, the only parameters of the static theory are a temperature variable and a stiffness variable. For moderate to large stiffness, our static results show nested stars, unnested stars, fans and other nodes, triangular and trapezoidal regions of trapped hexagonal phase, etc observed in electron microscopy of Ta4N and Mg-Cd alloys, and also in lead orthovanadate (which is trigonal-monoclinic); we even find imperfections in some nodes, like those observed. For small stiffness, we find patterns like those observed in the mineral Mg-cordierite. Our dynamical studies of growth and relaxation show the formation of these static patterns, and also transitory structures such as 12-armed bursts, streamers and striations which are also seen experimentally. The major aspects of the growth-relaxation process are quite unlike those in systems with conventional order parameters, for it is inherently nonlocal; for example, the changes from one snapshot to the next are not predictable by inspection.Comment: 9 pages, 3 figures (1 b&w, 2 colour); animations may be viewed at http://huron.physics.utoronto.ca/~curnoe/sim.htm

    The Innermost Stable Circular Orbit of Binary Black Holes

    Full text link
    We introduce a new method to construct solutions to the constraint equations of general relativity describing binary black holes in quasicircular orbit. Black hole pairs with arbitrary momenta can be constructed with a simple method recently suggested by Brandt and Bruegmann, and quasicircular orbits can then be found by locating a minimum in the binding energy along sequences of constant horizon area. This approach produces binary black holes in a "three-sheeted" manifold structure, as opposed to the "two-sheeted" structure in the conformal-imaging approach adopted earlier by Cook. We focus on locating the innermost stable circular orbit and compare with earlier calculations. Our results confirm those of Cook and imply that the underlying manifold structure has a very small effect on the location of the innermost stable circular orbit.Comment: 8 pages, 3 figures, RevTex, submitted to PR
    • …
    corecore