297 research outputs found

    Cerebellar lesions: is there a lateralisation effect on memory deficits?

    Get PDF
    Summary: Background. Until recently, neurosurgeons eagerly removed cerebellar lesions without consideration of future cognitive impairment that might be caused by the resection. In children, transient cerebellar mutism after resection has lead to a diminished use of midline approaches and vermis transection, as well as reduced retraction of the cerebellar hemispheres. The role of the cerebellum in higher cognitive functions beyond coordination and motor control has recently attracted significant interest in the scientific community, and might change the neurosurgical approach to these lesions. The aim of this study was to investigate the specific effects of cerebellar lesions on memory, and to assess a possible lateralisation effect. Methods. We studied 16 patients diagnosed with a cerebellar lesion, from January 1997 to April 2005, in the "Centre Hospitalier Universitaire Vaudois (CHUV)”, Lausanne, Switzerland. Different neuropsychological tests assessing short term and anterograde memory, verbal and visuo-spatial modalities were performed pre-operatively. Results. Severe memory deficits in at least one modality were identified in a majority (81%) of patients with cerebellar lesions. Only 1 patient (6%) had no memory deficit. In our series lateralisation of the lesion did not lead to a significant difference in verbal or visuo-spatial memory deficits. Findings. These findings are consistent with findings in the literature concerning memory deficits in isolated cerebellar lesions. These can be explained by anatomical pathways. However, the cross-lateralisation theory cannot be demonstrated in our series. The high percentage of patients with a cerebellar lesion who demonstrate memory deficits should lead us to assess memory in all patients with cerebellar lesion

    feature-segmentation-based registration for fast and accurate deep brain stimulation targeting

    Get PDF
    Objects Deep brain stimulation (DBS) has turned out to be the surgical technique of choice for the treatment of movement disorders, e.g. Parkinsons disease (PD), the usual target being the subthalamic nucleus (STN). The targeting of such a small structure is crucial for the outcome of the surgery. Unfortunately the STN is in general not easily distinguishable in common medical images. Material and Methods Eight bilaterally implanted PD patients were considered (16 STNs). A three-dimensional MR T1-weighted sequence and inversion recovery T2-weighted coronal slices were acquired pre-operatively. We study the influence on the STN location of several surrounding structures through a proposed methodology for the construction of a ground truth and an original validation scheme that allows evaluating performances of different targeting methods. Results The inter-expert variability in identifying the STN location is 1.61 ± 0.29 mm and 1.40 ± 0.38 mm for expert 1 and 2 respectively while the best choice of features using segmentation-based registration gives an error of 1.55 ± 0.73 mm. Conclusions By registering a binary mask of the third and lateral ventricles of the patient with its corresponding binary mask of the atlas we obtain a fast, automatic and accurate pre-operative targeting comparable to the experts variability

    Automatic Subthalamic Nucleus Targeting for Deep Brain Stimulation. A Validation Study

    Get PDF
    In functional stereotactic neurosurgery, one of the cornerstones upon which the success and the operating time depends is an accurate targeting. The subthalamic nucleus (STN) is the usual target involved when applying Deep Brain Stimulation (DBS) for the Parkinsons disease (PD). Unfortunately, STN is usually not clearly visible in common medical imaging modalities, which justifies the use of atlas-based segmentation techniques to infer the STN location. We propose a scheme that allows both, to perform a comparison between different non-rigid atlas registration algorithms and to evaluate their usability to locate the STN automatically. Using our validation evaluation scheme and accurate registration algorithms we demonstrate that automatic STN localization is possible and accurate

    Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: A European consensus statement

    Get PDF
    Rasmussen encephalitis (RE) is a rare but severe immune-mediated brain disorder leading to unilateral hemispheric atrophy, associated progressive neurological dysfunction and intractable seizures. Recent data on the pathogenesis of the disease, its clinical and paraclinical presentation, and therapeutic approaches are summarized. Based on these data, we propose formal diagnostic criteria and a therapeutic pathway for the management of RE patient

    Validation of Experts Versus Atlas-Based and Automatic Registration Methods for Subthalamic Nucleus Targeting on MRI

    Get PDF
    Objects. In functional stereotactic neurosurgery, one of the cornerstones upon which the success and the operating time depends is an accurate targeting. The subthalamic nucleus (STN) is the usual target involved when applying Deep Brain Stimulation (DBS) for Parkinson's disease (PD). Unfortunately, STN is usually not clearly visible in common medical imaging modalities, which justifies the use of atlas-based segmentation techniques to infer the STN location. Materials and Methods. 8 bilaterally implanted PD patients were included in this study. A three-dimensional T1-weighted sequence and inversion recovery T2-weighted coronal slices were acquired pre-operatively. We propose a methodology for the construction of a ground truth of the STN location and a scheme that allows both, to perform a comparison between different non-rigid registration algorithms and to evaluate their usability to locate the STN automatically. Results. The intra-expert variability in identifying the STN location is 1.06 ± 0.61 mm while the best non-rigid registration method gives an error of 1.80 ± 0.62 mm. On the other hand, statistical tests show that an affine registration with only 12 degrees-of-freedom is not enough for this application. Conclusions. Using our validation-evaluation scheme we demonstrate that automatic STN localization is possible and accurate with non-rigid registration algorithms

    Atlas-Based Segmentation of Pathological Brain MR Images

    Get PDF
    We propose a method for brain atlas deformation in presence of large space-occupying tumors, based on an a priori model of lesion growth that assumes radial expansion of the lesion from its starting point. First, an affine registration brings the atlas and the patient into global correspondence. Then, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. Finally, the seeded atlas is deformed, combining a method derived from optical flow principles and a model of lesion growth (MLG). Results show that the method can be applied to the automatic segmentation of structures and substructures in brains with gross deformation, with important medical applications in neurosurgery, radiosurgery and radiotherapy

    Biomechanical simulations of the scoliotic deformation process in the pinealectomized chicken: a preliminary study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The basic mechanisms whereby mechanical factors modulate the metabolism of the growing spine remain poorly understood, especially the role of growth adaptation in spinal disorders like in adolescent idiopathic scoliosis (AIS). This paper presents a finite element model (FEM) that was developed to simulate early stages of scoliotic deformities progression using a pinealectomized chicken as animal model.</p> <p>Methods</p> <p>The FEM includes basic growth and growth modulation created by the muscle force imbalance. The experimental data were used to adapt a FEM previously developed to simulate the scoliosis deformation process in human. The simulations of the spine deformation process are compared with the results of an experimental study including a group of pinealectomized chickens.</p> <p>Results</p> <p>The comparison of the simulation results of the spine deformation process (Cobb angle of 37°) is in agreement with experimental scoliotic deformities of two representative cases (Cobb angle of 41° and 30°). For the vertebral wedging, a good agreement is also observed between the calculated (28°) and the observed (25° – 30°) values.</p> <p>Conclusion</p> <p>The proposed biomechanical model presents a novel approach to realistically simulate the scoliotic deformation process in pinealectomized chickens and investigate different parameters influencing the progression of scoliosis.</p

    Clinical Study The Accordion Maneuver: A Noninvasive Strategy for Absent or Delayed Callus Formation in Cases of Limb Lengthening

    Get PDF
    The distraction osteogenesis (DO) technique has been used worldwide to treat many orthopaedic conditions. Although successful, absent or delayed callus formation in the distraction gap can lead to significant morbidities. An alternate cycle of distractioncompression (accordion maneuver) is one approach to accelerate bone regeneration. The primary aim of our study is to report our experience with the accordion maneuver during DO and to provide a detailed description of this technique, as performed in our center. The secondary aim is to present a review of the literature regarding the use of accordion maneuver. We reviewed the database of all patients undergoing limb lengthening from the year of 1997 to 2012. Four patients (6.15%) out of 65 showed poor bone regenerate in their tibiae and therefore accordion maneuver was applied for a mean of 6.75 weeks. Of these, three patients have had successful outcome with this technique. The literature showed that this technique is successful approach to trigger bone healing. However, details of how and when to apply this combination of distraction-compression forces were lacking. In conclusion, the accordion technique is safe noninvasive approach to promote bone formation, thus avoiding more invasive surgical procedures in cases of poor callus formation in limb lengthening
    • …
    corecore