12 research outputs found

    Characterization and intracellular localization of putative Chlamydia pneumoniae effector proteins

    Get PDF
    We here describe four proteins of Chlamydia pneumoniae, which might play a role in host-pathogen interaction. The hypothetical bacterial proteins CPn0708 and CPn0712 were detected in Chlamydia pneumoniae-infected host cells by indirect immunofluorescence tests with polyclonal antisera raised against the respective proteins. While CPn0708 was localized within the inclusion body, CPn0712 was identified in the inclusion membrane and in the surrounding host cell cytosol. CPn0712 colocalizes with actin, indicating its possible interaction with components of the cytoskeleton. Investigations on CPn0809 and CPn1020, two Chlamydia pneumoniae proteins previously described to be secreted into the host cell cytosol, revealed colocalization with calnexin, a marker for the ER. Neither CPn0712, CPn0809 nor CPn1020 were able to inhibit host cell apoptosis. Furthermore, transient expression of CPn0712, CPn0809 and CPn1020 by the host cell itself had no effect on subsequent infection with Chlamydia pneumoniae. However, microarray analysis of CPn0712-expressing host cells revealed six host cell genes which were regulated as in host cells infected with Chlamydia pneumoniae, indicating the principal usefulness of heterologous expression to study the effect of Chlamydia pneumoniae proteins on host cell modulation

    Analysis of pmpD Expression and PmpD Post-Translational Processing during the Life Cycle of Chlamydia trachomatis Serovars A, D, and L2

    Get PDF
    BACKGROUND: The polymorphic membrane protein D (PmpD) in Chlamydia is structurally similar to autotransporter proteins described in other bacteria and may be involved in cellular and humoral protective immunity against Chlamydia. The mechanism of PmpD post-translational processing and the role of its protein products in the pathogenesis of chlamydial infection have not been very well elucidated to date. METHODOLOGY/PRINCIPAL FINDINGS: Here we examined the expression and post-translational processing of the protein product of the pmpD gene during the life cycle of C. trachomatis serovars A, D, and L2. Each of these three serovars targets different human organs and tissues and encodes a different pmpD gene nucleotide sequence. Our quantitative real-time reverse transcription polymerase chain reaction results demonstrate that the pmpD gene is up-regulated at 12-24 hours after infection regardless of the Chlamydia serovar. This up-regulation is coincidental with the period of exponential growth and replication of reticulate bodies (RB) of Chlamydia and indicates a probable similarity in function of pmpD in serovars A, D, and L2 of Chlamydia. Using mass spectrometry analysis, we identified the protein products of post-translational processing of PmpD of C. trachomatis serovar L2 and propose a double pathway model for PmpD processing, with one cleavage site between the passenger and autotransporter domains and the other site in the middle of the passenger domain. Notably, when Chlamydia infected culture cells were subjected to low (28 degrees C) temperature, PmpD post-translational processing and secretion was found to be uninhibited in the resulting persistent infection. In addition, confocal microscopy of cells infected with Chlamydia confirms our earlier hypothesis that PmpD is secreted outside Chlamydia and its secretion increases with growth of the chlamydial inclusion. CONCLUSION/SIGNIFICANCE: The results of this current study involving multiple Chlamydia serovars support the general consensus that the pmpD gene is maximally expressed at mid infection and provide new information about PmpD as an autotransporter protein which is post-translationally processed and secreted outside Chlamydia during normal and low temperature induced persistent chlamydial infection

    Cationic Liposomes Formulated with Synthetic Mycobacterial Cordfactor (CAF01): A Versatile Adjuvant for Vaccines with Different Immunological Requirements

    Get PDF
    It is now emerging that for vaccines against a range of diseases including influenza, malaria and HIV, the induction of a humoral response is insufficient and a substantial complementary cell-mediated immune response is necessary for adequate protection. Furthermore, for some diseases such as tuberculosis, a cellular response seems to be the sole effector mechanism required for protection. The development of new adjuvants capable of inducing highly complex immune responses with strong antigen-specific T-cell responses in addition to antibodies is therefore urgently needed. (cell-mediated/humoral) and malaria (humoral) immunization with CAF01-based vaccines elicited significant protective immunity against challenge.CAF01 is potentially a suitable adjuvant for a wide range of diseases including targets requiring both CMI and humoral immune responses for protection

    Comparative Expression Profiling of the Chlamydia trachomatis pmp Gene Family for Clinical and Reference Strains

    Get PDF
    Chlamydia trachomatis, an obligate intracellular pathogen, is a leading worldwide cause of ocular and urogenital diseases. Advances have been made in our understanding of the nine-member polymorphic membrane protein (Pmp) gene (pmp) family of C. trachomatis. However, there is only limited information on their biologic role, especially for biological variants (biovar) and clinical strains.We evaluated expression for pmps throughout development for reference strains E/Bour and L2/434, representing different biovars, and for clinical E and L2 strains. Immunoreactivity of patient sera to recombinant (r)Pmps was also determined. All pmps were expressed at two hours. pmpA had the lowest expression but was up-regulated at 12 h for all strains, indicating involvement in reticulate body development. For pmpD, expression peaked at 36 h. Additionally, 57.7% of sera from infected and 0% from uninfected adolescents were reactive to rPmpD (p = 0.001), suggesting a role in immunogenicity. pmpF had the highest expression levels for all clinical strains and L2/434 with differential expression of the pmpFE operon for the same strains. Sera were nonreactive to rPmpF despite immunoreactivity to rMOMP and rPmpD, suggesting that PmpF is not associated with humoral immune responses. pmpFE sequences for clinical strains were identical to those of the respective reference strains. We identified the putative pmpFE promoter, which was, surprisingly, 100% conserved for all strains. Analyses of ribosomal binding sites, RNase E, and hairpin structures suggested complex regulatory mechanism(s) for this >6 Kb operon.The dissimilar expression of the same pmp for different C. trachomatis strains may explain different strain-specific needs and phenotypic distinctions. This is further supported by the differential immunoreactivity to rPmpD and rPmpF of sera from patients infected with different strains. Furthermore, clinical E strains did not correlate with the E reference strain at the gene expression level, reinforcing the need for expansive studies of clinical strains

    The Chlamydia psittaci Genome: A Comparative Analysis of Intracellular Pathogens

    Get PDF
    Chlamydiaceae are a family of obligate intracellular pathogens causing a wide range of diseases in animals and humans, and facing unique evolutionary constraints not encountered by free-living prokaryotes. To investigate genomic aspects of infection, virulence and host preference we have sequenced Chlamydia psittaci, the pathogenic agent of ornithosis.A comparison of the genome of the avian Chlamydia psittaci isolate 6BC with the genomes of other chlamydial species, C. trachomatis, C. muridarum, C. pneumoniae, C. abortus, C. felis and C. caviae, revealed a high level of sequence conservation and synteny across taxa, with the major exception of the human pathogen C. trachomatis. Important differences manifest in the polymorphic membrane protein family specific for the Chlamydiae and in the highly variable chlamydial plasticity zone. We identified a number of psittaci-specific polymorphic membrane proteins of the G family that may be related to differences in host-range and/or virulence as compared to closely related Chlamydiaceae. We calculated non-synonymous to synonymous substitution rate ratios for pairs of orthologous genes to identify putative targets of adaptive evolution and predicted type III secreted effector proteins.This study is the first detailed analysis of the Chlamydia psittaci genome sequence. It provides insights in the genome architecture of C. psittaci and proposes a number of novel candidate genes mostly of yet unknown function that may be important for pathogen-host interactions

    Desarrollo sustentable en América Latina : oportunidades para la próxima década

    No full text
    Amyloid fibrils formed by the 29-residue peptide hormone glucagon at different concentrations have strikingly different morphologies when observed by transmission electron microscopy. Fibrils formed at low concentration (0.25 mg/mL) consist of two or more protofilaments with a regular twist, while fibrils at high concentration (8 mg/mL) consist of two straight protofilaments. Here, we explore the structural differences underlying glucagon polymorphism using proteolytic degradation, linear and circular dichroism, Fourier transform infrared spectroscopy (FTIR), and X-ray fiber diffraction. Morphological differences are perpetuated at all structural levels, indicating that the two fibril classes differ in terms of protofilament backbone regions, secondary structure, chromophore alignment along the fibril axis, and fibril superstructure. Straight fibrils show a conventional beta-sheet-rich far-UV circular dichroism spectrum whereas that of twisted fibrils is dominated by contributions from beta-turns. Fourier transform infrared spectroscopy confirms this and also indicates a more dense backbone with weaker hydrogen bonding for the twisted morphology. According to linear dichroism, the secondary structural elements and the aromatic side chains in the straight fibrils are more highly ordered with respect to the alignment axis than the twisted fibrils. A series of highly periodical reflections in the diffractogram of the straight fibrils can be fitted to the diffraction pattern expected from a cylinder. Thus, the highly integrated structural organization in the straight fibril leads to a compact and highly uniform fibril with a well-defined edge. Prolonged proteolytic digestion confirmed that the straight fibrils are very compact and stable, while parts of the twisted fibril backbone are much more readily degraded. Differences in the digest patterns of the two morphologies correlate with predictions from two algorithms, suggesting that the polymorphism is inherent in the glucagon sequence. Glucagon provides a striking illustration of how the same short sequence can be folded into two remarkably different fibrillar structures. (C) 2010 Elsevier Ltd. All rights reserved
    corecore