4 research outputs found

    Effect of carvacrol in the properties of films based on poly (vinyl alcohol) with different molecular characteristics

    Full text link
    [EN] Poly (vinyl alcohol) (PVA) is a hydrophilic linear polymer obtained from the controlled hydrolysis of poly (vinyl acetate) (PVAc). The molecular weight (Mw) and degree of hydrolysis (DH) of PVA are considered relevant in both the functionality of the polymer and its capacity for film formation. This study analysed the influence of the Mw and DH of PVA on both the film's ability to incorporate carvacrol (CA), for the purposes of obtaining active films for food packaging application, as well as on the film microstructure, thermal behaviour and its functional properties as packaging material. CA was incorporated at 5 and 10 g/100 g polymer by emulsification in the polymer-water solutions, while the films were obtained by casting. The higher Mw polymer provided films with a better mechanical performance but less CA retention and a more heterogeneous structure. In contrast, low Mw, partially acetylated PVA gave rise to homogenous films with a higher CA content that increased the mechanical resistance and stretchability of the films. The melting temperature of this polymer with acetyl groups was lower than the degradation temperature, which makes thermoprocessing feasible.The authors would like to thank the financial support from the Ministerio de Economia y Competitividad (MINECO) of Spain, through the project AGL2016-76699-R. Author Johana Andrade thanks the Departamento de Narino-Colombia y la Fundacion CEIBA for the doctoral grant. The authors also thank the services rendered by the Electron Microscopy Service of the UPV.Andrade, J.; González Martínez, MC.; Chiralt Boix, MA. (2020). Effect of carvacrol in the properties of films based on poly (vinyl alcohol) with different molecular characteristics. Polymer Degradation and Stability. 179:1-11. https://doi.org/10.1016/j.polymdegradstab.2020.109282S111179Bhagabati, P., Hazarika, D., & Katiyar, V. (2019). Tailor-made ultra-crystalline, high molecular weight poly(ε-caprolactone) films with improved oxygen gas barrier and optical properties: a facile and scalable approach. International Journal of Biological Macromolecules, 124, 1040-1052. doi:10.1016/j.ijbiomac.2018.11.199Bai, Z., Shi, K., Su, T., & Wang, Z. (2018). Correlation between the chemical structure and enzymatic hydrolysis of Poly(butylene succinate), Poly(butylene adipate), and Poly(butylene suberate). Polymer Degradation and Stability, 158, 111-118. doi:10.1016/j.polymdegradstab.2018.10.024Cano, A., Fortunati, E., Cháfer, M., Kenny, J. M., Chiralt, A., & González-Martínez, C. (2015). Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol). Food Hydrocolloids, 48, 84-93. doi:10.1016/j.foodhyd.2015.01.008Kahvand, F., & Fasihi, M. (2019). Plasticizing and anti-plasticizing effects of polyvinyl alcohol in blend with thermoplastic starch. International Journal of Biological Macromolecules, 140, 775-781. doi:10.1016/j.ijbiomac.2019.08.185Aydın, A. A., & Ilberg, V. (2016). Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol:starch blends. Carbohydrate Polymers, 136, 441-448. doi:10.1016/j.carbpol.2015.08.093Domene-López, D., Guillén, M. M., Martin-Gullon, I., García-Quesada, J. C., & Montalbán, M. G. (2018). Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends. Carbohydrate Polymers, 202, 299-305. doi:10.1016/j.carbpol.2018.08.137Hilmi, F. F., Wahit, M. ., Shukri, N. ., Ghazali, Z., & Zanuri, A. Z. (2019). Physico-chemical properties of biodegradable films of polyvinyl alcohol/sago starch for food packaging. Materials Today: Proceedings, 16, 1819-1824. doi:10.1016/j.matpr.2019.06.056Tian, H., Yan, J., Rajulu, A. V., Xiang, A., & Luo, X. (2017). Fabrication and properties of polyvinyl alcohol/starch blend films: Effect of composition and humidity. International Journal of Biological Macromolecules, 96, 518-523. doi:10.1016/j.ijbiomac.2016.12.067Lara, B. R. B., Araújo, A. C. M. A., Dias, M. V., Guimarães, M., Santos, T. A., Ferreira, L. F., & Borges, S. V. (2019). Morphological, mechanical and physical properties of new whey protein isolate/ polyvinyl alcohol blends for food flexible packaging. Food Packaging and Shelf Life, 19, 16-23. doi:10.1016/j.fpsl.2018.11.010Ghaderi, J., Hosseini, S. F., Keyvani, N., & Gómez-Guillén, M. C. (2019). Polymer blending effects on the physicochemical and structural features of the chitosan/poly(vinyl alcohol)/fish gelatin ternary biodegradable films. Food Hydrocolloids, 95, 122-132. doi:10.1016/j.foodhyd.2019.04.021Tang, Y.-F., Du, Y.-M., Hu, X.-W., Shi, X.-W., & Kennedy, J. F. (2007). Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydrate Polymers, 67(4), 491-499. doi:10.1016/j.carbpol.2006.06.015Thanyacharoen, T., Chuysinuan, P., Techasakul, S., Nooeaid, P., & Ummartyotin, S. (2018). Development of a gallic acid-loaded chitosan and polyvinyl alcohol hydrogel composite: Release characteristics and antioxidant activity. International Journal of Biological Macromolecules, 107, 363-370. doi:10.1016/j.ijbiomac.2017.09.002Ghorpade, V. S., Dias, R. J., Mali, K. K., & Mulla, S. I. (2019). Citric acid crosslinked carboxymethylcellulose-polyvinyl alcohol hydrogel films for extended release of water soluble basic drugs. Journal of Drug Delivery Science and Technology, 52, 421-430. doi:10.1016/j.jddst.2019.05.013Cazón, P., Velázquez, G., & Vázquez, M. (2019). Characterization of bacterial cellulose films combined with chitosan and polyvinyl alcohol: Evaluation of mechanical and barrier properties. Carbohydrate Polymers, 216, 72-85. doi:10.1016/j.carbpol.2019.03.093Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62. doi:10.1016/j.tifs.2015.12.001Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2014). Advances in antioxidant active food packaging. Trends in Food Science & Technology, 35(1), 42-51. doi:10.1016/j.tifs.2013.10.008Mousavi Khaneghah, A., Hashemi, S. M. B., & Limbo, S. (2018). Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111, 1-19. doi:10.1016/j.fbp.2018.05.001Kavoosi, G., Nateghpoor, B., Dadfar, S. M. M., & Dadfar, S. M. A. (2014). Antioxidant, antifungal, water binding, and mechanical properties of poly(vinyl alcohol) film incorporated with essential oil as a potential wound dressing material. Journal of Applied Polymer Science, 131(20), n/a-n/a. doi:10.1002/app.40937Chen, C., Xu, Z., Ma, Y., Liu, J., Zhang, Q., Tang, Z., … Xie, J. (2018). Properties, vapour-phase antimicrobial and antioxidant activities of active poly(vinyl alcohol) packaging films incorporated with clove oil. Food Control, 88, 105-112. doi:10.1016/j.foodcont.2017.12.039Chenwei, C., Zhipeng, T., Yarui, M., Weiqiang, Q., Fuxin, Y., Jun, M., & Jing, X. (2018). Physicochemical, microstructural, antioxidant and antimicrobial properties of active packaging films based on poly(vinyl alcohol)/clay nanocomposite incorporated with tea polyphenols. Progress in Organic Coatings, 123, 176-184. doi:10.1016/j.porgcoat.2018.07.001Ma, Q., Ren, Y., & Wang, L. (2017). Investigation of antioxidant activity and release kinetics of curcumin from tara gum/ polyvinyl alcohol active film. Food Hydrocolloids, 70, 286-292. doi:10.1016/j.foodhyd.2017.04.018Yoon, S.-D., Kim, Y.-M., Kim, B. I., & Je, J.-Y. (2017). Preparation and antibacterial activities of chitosan-gallic acid/polyvinyl alcohol blend film by LED-UV irradiation. Journal of Photochemistry and Photobiology B: Biology, 176, 145-149. doi:10.1016/j.jphotobiol.2017.09.024Kanatt, S. R., Rao, M. S., Chawla, S. P., & Sharma, A. (2012). Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocolloids, 29(2), 290-297. doi:10.1016/j.foodhyd.2012.03.005Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543-555. doi:10.1016/j.carbpol.2014.04.075Perdones, Á., Chiralt, A., & Vargas, M. (2016). Properties of film-forming dispersions and films based on chitosan containing basil or thyme essential oil. Food Hydrocolloids, 57, 271-279. doi:10.1016/j.foodhyd.2016.02.006Song, X., Zuo, G., & Chen, F. (2018). Effect of essential oil and surfactant on the physical and antimicrobial properties of corn and wheat starch films. International Journal of Biological Macromolecules, 107, 1302-1309. doi:10.1016/j.ijbiomac.2017.09.114Wiśniewska, M., Bogatyrov, V., Ostolska, I., Szewczuk-Karpisz, K., Terpiłowski, K., & Nosal-Wiercińska, A. (2015). Impact of poly(vinyl alcohol) adsorption on the surface characteristics of mixed oxide Mn x O y –SiO2. Adsorption, 22(4-6), 417-423. doi:10.1007/s10450-015-9696-2Tampau, A., González-Martínez, C., & Chiralt, A. (2020). Polyvinyl alcohol-based materials encapsulating carvacrol obtained by solvent casting and electrospinning. Reactive and Functional Polymers, 153, 104603. doi:10.1016/j.reactfunctpolym.2020.104603Abral, H., Hartono, A., Hafizulhaq, F., Handayani, D., Sugiarti, E., & Pradipta, O. (2019). Characterization of PVA/cassava starch biocomposites fabricated with and without sonication using bacterial cellulose fiber loadings. Carbohydrate Polymers, 206, 593-601. doi:10.1016/j.carbpol.2018.11.054Altan, A., Aytac, Z., & Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocolloids, 81, 48-59. doi:10.1016/j.foodhyd.2018.02.028Buendía−Moreno, L., Sánchez−Martínez, M. J., Antolinos, V., Ros−Chumillas, M., Navarro−Segura, L., Soto−Jover, S., … López−Gómez, A. (2020). Active cardboard box with a coating including essential oils entrapped within cyclodextrins and/or halloysite nanotubes. A case study for fresh tomato storage. Food Control, 107, 106763. doi:10.1016/j.foodcont.2019.106763Neira, L. M., Martucci, J. F., Stejskal, N., & Ruseckaite, R. A. (2019). Time-dependent evolution of properties of fish gelatin edible films enriched with carvacrol during storage. Food Hydrocolloids, 94, 304-310. doi:10.1016/j.foodhyd.2019.03.020Trindade, G. G. G., Thrivikraman, G., Menezes, P. P., França, C. M., Lima, B. S., Carvalho, Y. M. B. G., … Araújo, A. A. S. (2019). Carvacrol/β-cyclodextrin inclusion complex inhibits cell proliferation and migration of prostate cancer cells. Food and Chemical Toxicology, 125, 198-209. doi:10.1016/j.fct.2019.01.003Wang, H.-Y., Lu, S.-S., & Lun, Z.-R. (2009). Glass transition behavior of the vitrification solutions containing propanediol, dimethyl sulfoxide and polyvinyl alcohol. Cryobiology, 58(1), 115-117. doi:10.1016/j.cryobiol.2008.10.131Rimez, B., Rahier, H., Van Assche, G., Artoos, T., Biesemans, M., & Van Mele, B. (2008). The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), Part I: Experimental study of the degradation mechanism. Polymer Degradation and Stability, 93(4), 800-810. doi:10.1016/j.polymdegradstab.2008.01.010Rimez, B., Rahier, H., Van Assche, G., Artoos, T., & Van Mele, B. (2008). The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), Part II: Modelling the degradation kinetics. Polymer Degradation and Stability, 93(6), 1222-1230. doi:10.1016/j.polymdegradstab.2008.01.021Cristancho, D., Zhou, Y., Cooper, R., Huitink, D., Aksoy, F., Liu, Z., … Seminario, J. M. (2013). Degradation of polyvinyl alcohol under mechanothermal stretching. Journal of Molecular Modeling, 19(8), 3245-3253. doi:10.1007/s00894-013-1828-6Safna Hussan, K. P., Thayyil, M. S., Jinitha, T. V., & Kolte, J. (2019). Development of an ionogel membrane PVA/[EMIM] [SCN] with enhanced thermal stability and ionic conductivity for electrochemical application. Journal of Molecular Liquids, 274, 402-413. doi:10.1016/j.molliq.2018.10.128Restrepo, I., Medina, C., Meruane, V., Akbari-Fakhrabadi, A., Flores, P., & Rodríguez-Llamazares, S. (2018). The effect of molecular weight and hydrolysis degree of poly(vinyl alcohol)(PVA) on the thermal and mechanical properties of poly(lactic acid)/PVA blends. Polímeros, 28(2), 169-177. doi:10.1590/0104-1428.03117Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571-1579. doi:10.1016/j.foodchem.2012.03.094Atarés, L., De Jesús, C., Talens, P., & Chiralt, A. (2010). Characterization of SPI-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 99(3), 384-391. doi:10.1016/j.jfoodeng.2010.03.004Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry, 120(1), 193-198. doi:10.1016/j.foodchem.2009.10.006Valencia-Sullca, C., Jiménez, M., Jiménez, A., Atarés, L., Vargas, M., & Chiralt, A. (2016). Influence of liposome encapsulated essential oils on properties of chitosan films. Polymer International, 65(8), 979-987. doi:10.1002/pi.514

    Applications of Chitosan as Food Packaging Materials

    No full text
    The interest in biopolymers has increased due to the depletion of the fossil fuel reserve and the environmental impact caused by the accumulation of non-biodegradable plastic-based packaging materials. Many biopolymers have been developed from food waste products to reduce this waste and, at the same time, to obtain new food packaging materials. Chitosan is thus an alternative to synthetic polymers, and a raw material for new materials. To assess the suitability of a material as a food packaging material, it is necessary to study their mechanical and permeability properties. Mechanical properties allow to predict the behaviour of films during transportation, handling and storage of packaged foods. Barrier properties play a key role in maintaining the food product quality. Properties values depend on the type of chitosan used. Mechanical and barrier properties of pure chitosan films are suitable for food packaging and active packaging. These properties can be modified by combining chitosan with other components such as plasticizers, other polysaccharides, proteins and lipids. These combinations adapt the properties of the final polymer to the needs of the food to extend its useful life, while maintaining quality properties of the food and the biodegradability of the polymer. Chitosan displays antimicrobial activity against a wide range of foodborne filamentous fungi, yeast, and gram-negative and gram-positive bacteria. This antimicrobial property and film-forming capacity has made chitosan the reference polymer to develop active packaging with the ability to inhibit the growth of microorganisms and improve food safety. Regarding the optical properties, pure chitosan films in the visible range show high transmittance values, being optically transparent films. This is an important parameter related to the acceptability of the films by the consumer. In addition, chitosan-based films exhibit remarkable UV absorbance, which allows to protect food from lipid oxidations induced by UV radiation
    corecore