25,603 research outputs found

    Generalized dual symmetry of nonabelian theories, monopoles and dyons

    Full text link
    In the present talk we present an investigation of nonabelian SU(N) gauge theories, describing a system of fields with non--dual g and dual \tilde g charges and revealing the generalized dual symmetry. The Zwanziger type action is suggested. The renormalization group equations for pure nonabelian theories, in particular for pure SU(3)\times\widetilde{SU(3)} gauge theory (as an example) are analysed. We consider not only monopoles, but also dyons. The behaviour of the QCD total beta--function is investigated. It was shown that this beta--function is antisymmetric under the interchange \alpha\leftrightarrow\frac 1\alpha (here \alpha\equiv\alpha_s), and has zero ("fixed point") at \alpha = 1. Monopoles, or dyons, are responsible for the phase transition. Considering critical points at \alpha_1\approx 0.4 and \alpha_2\approx 2.5, we give an explanation of the freezing of \alpha_s.Comment: 15 pages, 5 figures, Presented at the 12th Lomonosov Conference on Elementary Particle Physics, Moscow State University, Moscow, 25-31 August, 200

    Comparative analysis of 18S rRNA genes from Myxobolus aeglefini Auerbach, 1906 isolated from cod (Gadus morhua), Plaice (Pleuronectes platessa) and dab (Limanda limanda), using PCR-RFLP

    Get PDF
    The myxosporean parasite Myxobolus aeglefini is a marine species, which can be found in the cartilage of mainly gadid fish species. The parasite has, however, been recorded in the flatfish plaice (Pleuronectes platessa) and dab (Limanda limanda). It is not clear if isolates from unrelated hosts represent the same species. Therefore a molecular study was conducted to reveal differences at the DNA level between these isolates. PCR was successfully conducted on three different isolates of Myxobolus aeglefini sampled from cod (Gadus morhua), plaice and dab respectively, using 18S rDNA as template. A PCR product of approx. 1600 base pairs was obtained and RFLP (Restriction Fragment Length Polymerase) was conducted on the fragment with the restriction enzymes Hinf I, Msp I and Hae III. No differences between the isolates were found, suggesting that the three isolates represent the same species

    The Fundamental-Weak Scale Hierarchy in the Standard Model

    Full text link
    The multiple point principle, according to which several vacuum states with the same energy density exist, is put forward as a fine-tuning mechanism predicting the ratio between the fundamental and electroweak scales in the Standard Model (SM). It is shown that this ratio is exponentially huge: ∌e40\sim e^{40}. Using renormalisation group equations for the SM, we obtain the effective potential in the 2-loop approximation and investigate the existence of its postulated second minimum at the fundamental scale. The investigation of the evolution of the top quark Yukawa coupling constant in the 2-loop approximation shows that, with initial values of the top Yukawa coupling in the interval h(Mt)=0.95±0.03h(M_t)=0.95\pm 0.03 (here MtM_t is the top quark pole mass), a second minimum of the SM effective potential can exist in the region ϕmin2≈1016−1022\phi_{min2}\approx 10^{16}-10^{22} GeV. A prediction is made of the existence of a new bound state of 6 top quarks and 6 anti-top quarks, formed due to Higgs boson exchanges between pairs of quarks/anti-quarks. This bound state is supposed to condense in a new phase of the SM vacuum. This gives rise to the possibility of having a phase transition between vacua with and without such a condensate. The existence of three vacuum states (new, electroweak and fundamental) solves the hierarchy problem in the SM.Comment: 30 pages, 7 figures; to be published in Phys. Atom. Nuc

    Behavior of quantum entropies in polaronic systems

    Full text link
    Quantum entropies and state distances are analyzed in polaronic systems with short range (Holstein model) and long range (Froš\ddot{o}hlich model) electron-phonon coupling. These quantities are extracted by a variational wave function which describes very accurately polaron systems with arbitrary size in all the relevant parameter regimes. With the use of quantum information tools, the crossover region from weak to strong coupling regime can be characterized with high precision. Then, the linear entropy is found to be very sensitive to the range of the electron-phonon coupling and the adiabatic ratio. Finally, the entanglement entropy is studied as a function of the system size pointing out that it not bounded, but scales as the logarithm of the size either for weak electron-phonon coupling or for short range interaction. This behavior is ascribed to the peculiar coupling induced by the single electron itinerant dynamics on the phonon subsystem.Comment: 4 figures, to be published in Phys. Rev.

    Diphoton decay of the Higgs boson and new bound states of top and anti-top quarks

    Full text link
    We consider the constraints, provided by the LHC results on Higgs boson decay into 2 photons and its production via gluon fusion, on the previously proposed Standard Model (SM) strongly bound state SS of 6 top quarks and 6 anti-top quarks. A correlation is predicted between the ratios ÎșÎł\kappa_{\gamma} and Îșg\kappa_g of the Higgs diphoton decay and gluon production amplitudes respectively to their SM values. We estimate the contribution to these amplitudes from one loop diagrams involving the 12 quark bound state SS and related excited states using an atomic physics based model. We find two regions of parameter space consistent with the ATLAS and CMS data on (ÎșÎł\kappa_{\gamma}, Îșg\kappa_g) at the 3 sigma level: a region close to the SM values (ÎșÎł=1\kappa_{\gamma}=1, Îșg=1\kappa_g =1) with the mass of the bound state mS>400m_S > 400 GeV and a region with (ÎșÎłâˆŒ3/2\kappa_{\gamma} \sim 3/2, Îșg∌−3/4\kappa_g \sim -3/4) corresponding to a bound state mass of mS∌220m_S \sim 220 GeV.Comment: 27 pages and 4 figure

    Optimal control, geometry, and quantum computing

    Get PDF
    We prove upper and lower bounds relating the quantum gate complexity of a unitary operation, U, to the optimal control cost associated to the synthesis of U. These bounds apply for any optimal control problem, and can be used to show that the quantum gate complexity is essentially equivalent to the optimal control cost for a wide range of problems, including time-optimal control and finding minimal distances on certain Riemannian, subriemannian, and Finslerian manifolds. These results generalize the results of Nielsen, Dowling, Gu, and Doherty, Science 311, 1133-1135 (2006), which showed that the gate complexity can be related to distances on a Riemannian manifoldComment: 7 Pages Added Full Names to Author

    Developing the Deutsch-Hayden approach to quantum mechanics

    Get PDF
    The formalism of Deutsch and Hayden is a useful tool for describing quantum mechanics explicitly as local and unitary, and therefore quantum information theory as concerning a "flow" of information between systems. In this paper we show that these physical descriptions of flow are unique, and develop the approach further to include the measurement interaction and mixed states. We then give an analysis of entanglement swapping in this approach, showing that it does not in fact contain non-local effects or some form of superluminal signalling.Comment: 14 pages. Added section on entanglement swappin

    Superconducting Spin Qubits

    Full text link
    We propose and theoretically investigate spin superconducting qubits. Spin superconducting qubit consists of a single spin confined in a Josephson junction. We show that owing to spin-orbit interaction, superconducting difference across the junction can polarize this spin. We demonstrate that this enables single qubit operations and more complicated quantum gates, where spins of different qubits interact via a mutual inductance of superconducting loop where the junctions are embedded. Recent experimental realizations of Josephson junctions made of semiconductor quantum dots in contact with superconducting leads have shown that the number of electrons in the quantum dot can be tuned by a gate voltage. Spin superconducting qubit is realized when the number of electrons is odd. We discuss the qubit properties at phenomenological level. We present a microscopic theory that enables us to make accurate estimations of the qubit parameters by evaluating the spin-dependent Josephson energy in the framework of fourth-order perturbation theory.Comment: 11 pages, 8 figure
    • 

    corecore