research

Optimal control, geometry, and quantum computing

Abstract

We prove upper and lower bounds relating the quantum gate complexity of a unitary operation, U, to the optimal control cost associated to the synthesis of U. These bounds apply for any optimal control problem, and can be used to show that the quantum gate complexity is essentially equivalent to the optimal control cost for a wide range of problems, including time-optimal control and finding minimal distances on certain Riemannian, subriemannian, and Finslerian manifolds. These results generalize the results of Nielsen, Dowling, Gu, and Doherty, Science 311, 1133-1135 (2006), which showed that the gate complexity can be related to distances on a Riemannian manifoldComment: 7 Pages Added Full Names to Author

    Similar works