6,996 research outputs found
Instabilities in Zakharov Equations for Laser Propagation in a Plasma
F.Linares, G.Ponce, J-C.Saut have proved that a non-fully dispersive Zakharov
system arising in the study of Laser-plasma interaction, is locally well posed
in the whole space, for fields vanishing at infinity. Here we show that in the
periodic case, seen as a model for fields non-vanishing at infinity, the system
develops strong instabilities of Hadamard's type, implying that the Cauchy
problem is strongly ill-posed
On the spectrum of the Laplace operator of metric graphs attached at a vertex -- Spectral determinant approach
We consider a metric graph made of two graphs
and attached at one point. We derive a formula relating the
spectral determinant of the Laplace operator
in terms of the spectral
determinants of the two subgraphs. The result is generalized to describe the
attachment of graphs. The formulae are also valid for the spectral
determinant of the Schr\"odinger operator .Comment: LaTeX, 8 pages, 7 eps figures, v2: new appendix, v3: discussions and
ref adde
Millisecond spin-flip times of donor-bound electrons in GaAs
We observe millisecond spin-flip relaxation times of donor-bound electrons in
high-purity n-GaAs . This is three orders of magnitude larger than previously
reported lifetimes in n-GaAs . Spin-flip times are measured as a function of
magnetic field and exhibit a strong power-law dependence for fields greater
than 4 T . This result is in qualitative agreement with previously reported
theory and measurements of electrons in quantum dots.Comment: 4 pages, 4 figure
Upper critical field divergence induced by mesoscopic phase separation in the organic superconductor (TMTSF)2ReO4
Due to the competition of two anion orders, (TMTSF)2ReO4, presents a phase
coexistence between semiconducting and metallic (superconducting) regions
(filaments or droplets) in a wide range of pressure. In this regime, the
superconducting upper critical field for H parallel to both c* and b' axes
present a linear part at low fields followed by a divergence above a cross-over
field. This cross-over corresponds to the 3D-2D decoupling transition expected
in filamentary or granular superconductors. The sharpness of the transition
also demonstrates that all filaments are of similar sizes and self organize in
a very ordered way. The distance between the filaments and their cross-section
are estimated.Comment: 4 pages, 4 figure
Bar imprints on the inner gas kinematics of M33
We present measurements of the stellar and gaseous velocities in the central
5' of the Local Group spiral M33. The data were obtained with the ARC 3.5m
telescope. Blue and red spectra with resolutions from 2 to 4\AA covering the
principal gaseous emission and stellar absorption lines were obtained along the
major and minor axes and six other position angles. The observed radial
velocities of the ionized gas along the photometric major axis of M33 remain
flat at ~22 km s^{-1} all the way into the center, while the stellar velocities
show a gradual rise from zero to 22 km s^{-1} over that same region. The
central star cluster is at or very close to the dynamical center, with a
velocity that is in accordance with M33's systemic velocity to within our
uncertainties. Velocities on the minor axis are non-zero out to about 1' from
the center in both the stars and gas. Together with the major axis velocities,
they point at significant deviations from circular rotation. The most likely
explanation for the bulk of the velocity patterns are streaming motions along a
weak inner bar with a PA close to that of the minor axis, as suggested by
previously published IR photometric images. The presence of bar imprints in M33
implies that all major Local Group galaxies are barred. The non-circular
motions over the inner 200 pc make it difficult to constrain the shape of M33's
inner dark matter halo profile. If the non-circular motions we find in this
nearby Sc galaxy are present in other more distant late-type galaxies, they
might be difficult to recognize.Comment: 20 pages, 12 figures, ApJ in pres
Contamination of indoor air by toxic soil vapours: the effects of subfloor ventilation and other protective measures
A steady-state analytical model is derived for estimating the concentration of vapour-phase contaminants in indoor air in houses with subfloor voids, given the contaminant concentration in bulk soil. The model includes the key mechanisms of transport and dispersion—contaminant partitioning into the soil-vapour phase, molecular diffusion, suction flow, stack effect, and ventilation, including contaminant transport by ventilation flow between subfloor void and living space. Using the model, different construction styles are examined from the point of view of their resistance to ingress of soil gases. Model results indicate that indoor air concentration depends strongly on wind velocity and on geometrical parameters of void and living space. Worked examples for houses of different construction styles illustrate the effects of wind velocity and house parameters on the concentration of benzene in soil that would give rise to its maximum permissible concentration in indoor air. Brief consideration is also given to concrete raft foundations and clean cover systems
Recent progress in the theory of railway-generated ground vibrations
Recent progress in the theory of railway-generated ground vibration
Generation of surface acoustic waves by moving trains
The theory of generation of ground surface acoustic waves by trains is developed using the Green's function formalism. Mechanical properties of the rail track and parameters of train and soil (including contact nonlinearity of track-soil system) are taken into account. It's shown that generated ground vibration spectra depend strongly on the geometrical parameters of track and train, on the mechanical properties of soil, and on the axle loads of the carriages. Simple practical methods are suggested to modify, the spectra of railway-generated surface elastic waves and to reduce their level at chosen frequency bands
- …