183 research outputs found

    KIC 4150611: a rare multi-eclipsing quintuple with a hybrid pulsator

    Full text link
    We present the results of our analysis of KIC 4150611 (HD 181469) - an interesting, bright quintuple system that includes a hybrid δ\delta Sct/γ\gamma Dor pulsator. Four periods of eclipses - 94.2, 8.65, 1.52 and 1.43 d - have been observed by the Kepler satellite, and three point sources (A, B, and C) are seen in high angular resolution images. From spectroscopic observations made with the HIDES spectrograph attached to the 1.88-m telescope of the Okayama Astrophysical Observatory (OAO), for the first time we calculated radial velocities (RVs) of the component B - a pair of G-type stars - and combined them with Kepler photometry in order to obtain absolute physical parameters of this pair. We also managed to directly measure RVs of the pulsator, also for the first time. Additionally, we modelled the light curves of the 1.52 and 1.43-day pairs, and measured their eclipse timing variations (ETVs). We also performed relative astrometry and photometry of three sources seen on the images taken with the NIRC2 camera of the Keck II telescope. Finally, we compared our results with theoretical isochrones. The brightest component Aa is the hybrid pulsator, transited every 94.2 days by a pair of K/M-type stars (Ab1+Ab2), which themselves form a 1.52-day eclipsing binary. The components Ba and Bb are late G-type stars, forming another eclipsing pair with a 8.65 day period. Their masses and radii are MBa=0.894±0.010M_{Ba}=0.894\pm0.010 M⊙_\odot, RBa=0.802±0.044R_{Ba}=0.802\pm0.044 R⊙_\odot for the primary, and MBb=0.888±0.010M_{Bb}=0.888\pm0.010 M⊙_\odot, RBb=0.856±0.038R_{Bb}=0.856\pm0.038 R⊙_\odot for the secondary. The remaining period of 1.43 days is possibly related to a faint third star C, which itself is most likely a background object. The system's properties are well-represented by a 35 Myr isochrone. There are also hints of additional bodies in the system.Comment: 14 pages, 15 figures, 7 tables, to appear in A&A, abstract modified in order to fit the arXiv limi

    Exploring the phase structure of lattice QCD with twisted mass quarks

    Full text link
    The phase structure of zero temperature twisted mass lattice QCD is investigated. We find strong metastabilities in the plaquette observable when the untwisted quark mass sweeps across zero.Comment: Talks presented at Lattice2004(spectrum), 6 pages, 6 figure

    Twisted mass fermions: neutral pion masses from disconnected contributions

    Get PDF
    Twisted mass fermions allow light quarks to be explored but with the consequence that there are mass splittings, such as between the neutral and charged pion. Using a direct calculation of the connected neutral pion correlator and stochastic methods to evaluate the disconnected correlations, we determine the neutral pion mass. We explore the dependence on lattice spacing and quark mass in quenched QCD. For dynamical QCD, we determine the sign of the splitting which is linked, via chiral PT, to the nature of the phase transition at small quark mass.Comment: 6 pages, poster (hadron spectrum and quark masses) at Lattice 2005,Dublin, July 25-3

    A note on the determination of light quark masses

    Full text link
    We provide a model-independent determination of the quantity B_0(m_d-m_u). Our approach rests only on chiral symmetry and data from the decay of the eta into three neutral pions. Since the low-energy prediction at next-to-leading order fails to reproduce the experimental results, we keep the strong interaction correction as an unknown parameter. As a first step, we relate this parameter to the quark mass difference using data from the Dalitz plot. A similar relation is obtained using data from the decay width. Combining both relations we obtain B_0(m_d-m_u)=(4495+/-440) MeV^2. The preceding value, combined with lattice determinations, leads to the values m_u(2 GeV)=(2.9+/-0.8) MeV and m_d(2 GeV)=(4.7+/-0.8) MeV.Comment: 8 pages, 1 figure, updated version with all detailed formulas, title slighly change

    Thin Sea-Ice Thickness as Inferred from Passive Microwave and In Situ Observations

    Get PDF
    Since microwave radiometric signals from sea-ice strongly reflect physical conditions of a layer near the ice surface, a relationship of brightness temperature with thickness is possible especially during the early stages of ice growth. Sea ice is most saline during formation stage and as the salinity decreases with time while at the same time the thickness of the sea ice increases, a corresponding change in the dielectric properties and hence the brightness temperature may occur. This study examines the extent to which the relationships of thickness with brightness temperature (and with emissivity) hold for thin sea-ice, approximately less than 0.2 -0.3 m, using near concurrent measurements of sea-ice thickness in the Sea of Okhotsk from a ship and passive microwave brightness temperature data from an over-flying aircraft. The results show that the brightness temperature and emissivity increase with ice thickness for the frequency range of 10-37 GHz. The relationship is more pronounced at lower frequencies and at the horizontal polarization. We also established an empirical relationship between ice thickness and salinity in the layer near the ice surface from a field experiment, which qualitatively support the idea that changes in the near-surface brine characteristics contribute to the observed thickness-brightness temperature/emissivity relationship. Our results suggest that for thin ice, passive microwave radiometric signals contain, ice thickness information which can be utilized in polar process studies

    Equation of State and Heavy-Quark Free Energy at Finite Temperature and Density in Two Flavor Lattice QCD with Wilson Quark Action

    Full text link
    We study the equation of state at finite temperature and density in two-flavor QCD with the RG-improved gluon action and the clover-improved Wilson quark action on a 163×4 16^3 \times 4 lattice. Along the lines of constant physics at mPS/mV=0.65m_{\rm PS}/m_{\rm V} = 0.65 and 0.80, we compute the second and forth derivatives of the grand canonical partition function with respect to the quark chemical potential μq=(μu+μd)/2\mu_q = (\mu_u+\mu_d)/2 and the isospin chemical potential μI=(μu−μd)/2\mu_I = (\mu_u-\mu_d)/2 at vanishing chemical potentials, and study the behaviors of thermodynamic quantities at finite μq\mu_q using these derivatives for the case μI=0\mu_I=0. In particular, we study density fluctuations at none-zero temperature and density by calculating the quark number and isospin susceptibilities and their derivatives with respect to μq\mu_q. To suppress statistical fluctuations, we also examine new techniques applicable at low densities. We find a large enhancement in the fluctuation of quark number when the density increased near the pseudo-critical temperature, suggesting a critical point at finite μq\mu_q terminating the first order transition line between hadronic and quark gluon plasma phases. This result agrees with the previous results using staggered-type quark actions qualitatively. Furthermore, we study heavy-quark free energies and Debye screening masses at finite density by measuring the first and second derivatives of these quantities for various color channels of heavy quark-quark and quark-anti-quark pairs. The results suggest that, to the leading order of μq\mu_q, the interaction between two quarks becomes stronger at finite densities, while that between quark and anti-quark becomes weaker.Comment: 38 pages, 63 figure

    Charm quark system at the physical point of 2+1 flavor lattice QCD

    Full text link
    We investigate the charm quark system using the relativistic heavy quark action on 2+1 flavor PACS-CS configurations previously generated on 323×6432^3 \times 64 lattice. The dynamical up-down and strange quark masses are set to the physical values by using the technique of reweighting to shift the quark hopping parameters from the values employed in the configuration generation. At the physical point, the lattice spacing equals a−1=2.194(10)a^{-1}=2.194(10) GeV and the spatial extent L=2.88(1)L=2.88(1) fm. The charm quark mass is determined by the spin-averaged mass of the 1S charmonium state, from which we obtain m_{\rm charm}^{\msbar}(\mu = m_{\rm charm}^{\msbar}) = 1.260(1)(6)(35) GeV, where the errors are due to our statistics, scale determination and renormalization factor. An additional systematic error from the heavy quark is of order αs2f(mQa)(aΛQCD)\alpha_s^2 f(m_Q a)(a \Lambda_{QCD}), which is estimated to be a percent level if the factor f(mQa)f(m_Q a) analytic in mQam_Q a is of order unity. Our results for the charmed and charmed-strange meson decay constants are fD=226(6)(1)(5)f_D=226(6)(1)(5) MeV, fDs=257(2)(1)(5)f_{D_s}=257(2)(1)(5) MeV, again up to the heavy quark errors of order αs2f(mQa)(aΛQCD)\alpha_s^2 f(m_Q a)(a \Lambda_{QCD}). Combined with the CLEO values for the leptonic decay widths, these values yield ∣Vcd∣=0.205(6)(1)(5)(9)|V_{cd}| = 0.205(6)(1)(5)(9), ∣Vcs∣=1.00(1)(1)(3)(3)|V_{cs}| = 1.00(1)(1)(3)(3), where the last error is on account of the experimental uncertainty of the decay widths.Comment: 16 pages, 12 figure

    Physical and Radiative Characteristic and Long-term Variability of the Okhotsk Sea Ice Cover

    Get PDF
    Much of what we know about the large scale characteristics of the Okhotsk Sea ice cover has been provided by ice concentration maps derived from passive microwave data. To understand what satellite data represent in a highly divergent and rapidly changing environment like the Okhotsk Sea, we take advantage of concurrent satellite, aircraft, and ship data acquired on 7 February and characterized the sea ice cover at different scales from meters to hundreds of kilometers. Through comparative analysis of surface features using co-registered data from visible, infrared and microwave channels we evaluated the general radiative and physical characteristics of the ice cover as well as quantify the distribution of different ice types in the region. Ice concentration maps from AMSR-E using the standard sets of channels, and also only the 89 GHz channel for optimal resolution, are compared with aircraft and high resolution visible data and while the standard set provides consistent results, the 89 GHz provides the means to observe mesoscale patterns and some unique features of the ice cover. Analysis of MODIS data reveals that thick ice types represents about 37% of the ice cover indicating that young and new ice types represent a large fraction of the ice cover that averages about 90% ice concentration according to passive microwave data. These results are used to interpret historical data that indicate that the Okhotsk Sea ice extent and area are declining at a rapid rate of about -9% and -12 % per decade, respectively

    Physical and Radiative Characteristics and Long Term Variability of the Okhotsk Sea Ice Cover

    Get PDF
    Much of what we know about the large scale characteristics of the Okhotsk Sea ice cover comes from ice concentration maps derived from passive microwave data. To understand what these satellite data represents in a highly divergent and rapidly changing environment like the Okhotsk Sea, we analyzed concurrent satellite, aircraft, and ship data and characterized the sea ice cover at different scales from meters to tens of kilometers. Through comparative analysis of surface features using co-registered data from visible, infrared and microwave channels we evaluated how the general radiative and physical characteristics of the ice cover changes as well as quantify the distribution of different ice types in the region. Ice concentration maps from AMSR-E using the standard sets of channels, and also only the 89 GHz channel for optimal resolution, are compared with aircraft and high resolution visible data and while the standard set provides consistent results, the 89 GHz provides the means to observe mesoscale patterns and some unique features of the ice cover. Analysis of MODIS data reveals that thick ice types represents about 37% of the ice cover indicating that young and new ice represent a large fraction of the lice cover that averages about 90% ice concentration, according to passive microwave data. A rapid decline of -9% and -12 % per decade is observed suggesting warming signals but further studies are required because of aforementioned characteristics and because the length of the ice season is decreasing by only 2 to 4 days per decade
    • …
    corecore