375 research outputs found

    Beyond basis invariants

    Full text link
    Physical observables cannot depend on the basis one chooses to describe fields. Therefore, all physically relevant properties of a model are, in principle, expressible in terms of basis-invariant combinations of the parameters. However, in many cases it becomes prohibitively difficult to establish key physical features exclusively in terms of basis invariants. Here, we advocate an alternative route in such cases: the formulation of basis-invariant statements in terms of basis-covariant objects. We give several examples where the basis-covariant path is superior to the traditional approach in terms of basis invariants. In particular, this includes the formulation of necessary and sufficient basis-invariant conditions for various physically distinct forms of CP conservation in two- and three-Higgs-doublet models.Comment: 20 pages, no figure

    Program summary report 10-inch LOX vent and relief valve, PN 5640073

    Get PDF
    Design and performance of liquid oxygen tank vent and relief valv

    Ion Trap Mass Spectrometers for Identity, Abundance and Behavior of Volatiles on the Moon

    Get PDF
    NASA GSFC and The Open University (UK) are collaborating to deploy an Ion Trap Mass Spectrometer on the Moon to investigate the lunar water cycle. The ITMS is flight-proven throughthe Rosetta Philae comet lander mission. It is also being developed under ESA funding to analyse samples drilled from beneath the lunar surface on the Roscosmos Luna-27 lander (2025).Now, GSFC and OU will now develop a compact ITMS instrument to study the near-surface lunar exosphere on board a CLPS Astrobotic lander at Lacus Mortis in 2021

    Value of team approach combined with clinical pathway for diabetic foot problems: a clinical evaluation

    Get PDF
    Aims: To evaluate the effectiveness of management of diabetic foot problems (DFP) by the National University Hospital (NUH) Multidisciplinary Diabetic Foot Team combined with a clinical pathway in terms of average length of stay (ALOS), readmission rates, hospitalisation cost per patient, major reamputation rate, and complication rate. Methods: 939 patients admitted to the Department of Orthopaedic Surgery, NUH, for DFP from 2002 (before team formation) to 2007 (after team formation). It consisted of six cohorts of patients – 61 for 2002, 70 for 2003, 148 for 2004, 180 for 2005, 262 for 2006, and 218 for 2007. All patients were managed by the NUH Multidisciplinary Diabetic Foot Team combined with a clinical pathway. Statistical analyses were carried out for five parameters (ALOS, hospitalisation cost per patient, major amputation rate, readmission rate, and complication rate). Results: From 2002 to 2007, the ALOS was significantly reduced from 20.36 days to 12.20 days (p=0.0005). Major amputation rate was significantly reduced from 31.15 to 11.01% (p<0.0005). There was also a significant reduction in complication rate from 19.67 to 7.34% (p=0.005). There were reductions in the hospitalisation cost per patient and readmission rate after formation of the multidisciplinary team but they were not statistically significant. Conclusion: Our evaluation showed that a multidisciplinary team approach combined with the implementation of a clinical pathway in NUH was effective in reducing the ALOS, major amputation rate, and complication rate of DFP
    • …
    corecore