188 research outputs found

    Direct-acting antivirals and visceral leishmaniasis: A case report

    Get PDF
    Background: Visceral leishmaniasis is a vector-borne parasitic disease caused by protozoa belonging to the genus Leishmania. The clinical presentation of visceral leishmaniasis strictly depends on the host immunocompetency, whereas depressive conditions of the immune system impair the capability to resolve the infection and allow reactivation from sites of latency of the parasite. Case presentation: We describe a case of visceral leishmaniasis (VL) that occurred in a patient with chronic hepatitis C treated with direct-acting antiviral drugs (DAA). The hypothesized mechanism is the alteration of protective inflammation mechanisms secondary to DAA therapy. Downregulation of type II and III IFNs, their receptors, which accompany HCV clearance achieved during treatment with sofosbuvir and ribavirin might have a negative impact on a risk for reactivation of a previous Leishmania infection. We know indeed that IFN-\u3b3 is important to enhance killing mechanisms in macrophages, which are the primary target cells of Leishmania. Conclusion: Since VL is endemic in Sicily as well as in other countries of the Mediterranean basin, physicians should be aware of the possible unmasking of cryptic Leishmania infection by DAAs

    Rickettsia typhi and Haemophagocytic Syndrome

    Get PDF
    Appropriate therapy (dexamethasone, cyclosporin, and etoposide) could save the patient in those cases in which the pathogen-direct therapy has not been sufficient by itself to control the disease

    Mimicking human riboflavin responsive neuromuscular disorders by silencing flad-1 gene in C. elegans: Alteration of vitamin transport and cholinergic transmission

    Get PDF
    Riboflavin (Rf), or vitamin B2, is the precursor of FMN and FAD, redox cofactors of several dehydrogenases involved in energy metabolism, redox balance and other cell regulatory processes. FAD synthase, coded by FLAD1 gene in humans, is the last enzyme in the pathway converting Rf into FAD. Mutations in FLAD1 gene are responsible for neuromuscular disorders, in some cases treatable with Rf. In order to mimic these disorders, the Caenorhabditis elegans (C. elegans) gene orthologue of FLAD1 (flad-1) was silenced in a model strain hypersensitive to RNA interference in nervous system. Silencing flad-1 resulted in a significant decrease in total flavin content, paralleled by a decrease in the level of the FAD-dependent ETFDH protein and by a secondary transcriptional down-regulation of the Rf transporter 1 (rft-1) possibly responsible for the total flavin content decrease. Conversely an increased ETFDH mRNA content was found. These biochemical changes were accompanied by significant phenotypical changes, including impairments of fertility and locomotion due to altered cholinergic transmission, as indicated by the increased sensitivity to aldicarb. A proposal is made that neuronal acetylcholine production/release is affected by alteration of Rf homeostasis. Rf supplementation restored flavin content, increased rft-1 transcript levels and eliminated locomotion defects. In this aspect, C. elegans could provide a low-cost animal model to elucidate the molecular rationale for Rf therapy in human Rf responsive neuromuscular disorders and to screen other molecules with therapeutic potential

    In vitro antileishmanial activity of trans-stilbene and terphenyl compounds

    Get PDF
    Leishmaniasis are globally widespread parasitic diseases which often leads to death if left untreated. Currently available drugs present different drawbacks, so there is an urgent need to develop new, safe and cost-effective drugs against leishmaniasis. In this study we tested a small library of trans-stilbene and terphenyl derivatives against promastigote, amastigotes and intramacrophage amastigote forms of Leishmania infantum. Two compounds of the series, the trans-stilbene 3 and the terphenyl 11, presented the best activity and safety profiles. Terphenyl 11 showed a leshmanicidal activity higher than pentostam and the ability to induce apoptosis selectively in Leishmania infantum while saving macrophages and primary epithelial cells. Our data indicate that terphenyl compounds, as well as stilbenes, are endowed with leishmanicidal activity, showing potential for further studies in the context of leishmanial therapy

    NGN2 mmRNA-Based Transcriptional Programming in Microfluidic Guides hiPSCs Toward Neural Fate With Multiple Identities

    Get PDF
    Recent advancements in cell engineering have succeeded in manipulating cell identity with the targeted overexpression of specific cell fate determining transcription factors in a process named transcriptional programming. Neurogenin2 (NGN2) is sufficient to instruct pluripotent stem cells (PSCs) to acquire a neuronal identity when delivered with an integrating system, which arises some safety concerns for clinical applications. A non-integrating system based on modified messenger RNA (mmRNA) delivery method, represents a valuable alternative to lentiviral-based approaches. The ability of NGN2 mmRNA to instruct PSC fate change has not been thoroughly investigated yet. Here we aimed at understanding whether the use of an NGN2 mmRNA-based approach combined with a miniaturized system, which allows a higher transfection efficiency in a cost-effective system, is able to drive human induced PSCs (hiPSCs) toward the neuronal lineage. We show that NGN2 mRNA alone is able to induce cell fate conversion. Surprisingly, the outcome cell population accounts for multiple phenotypes along the neural development trajectory. We found that this mixed population is mainly constituted by neural stem cells (45% \ub1 18 PAX6 positive cells) and neurons (38% \ub1 8 \u3b2IIITUBULIN positive cells) only when NGN2 is delivered as mmRNA. On the other hand, when the delivery system is lentiviral-based, both providing a constant expression of NGN2 or only a transient pulse, the outcome differentiated population is formed by a clear majority of neurons (88% \ub1 1 \u3b2IIITUBULIN positive cells). Altogether, our data confirm the ability of NGN2 to induce neuralization in hiPSCs and opens a new point of view in respect to the delivery system method when it comes to transcriptional programming applications

    Antiparasitic effect of stilbene and terphenyl compounds against trypanosoma cruzi parasites

    Get PDF
    Background: Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite Trypanosoma cruzi. No progress in the treatment of this pathology has been made since Nifurtimox was introduced more than fifty years ago, and this drug is considered very aggressive and may cause several adverse effects. This drug currently has severe limitations, including a high frequency of undesirable side effects and limited efficacy and availability, so research to discover new drugs for the treatment of Chagas disease is imperative. Many drugs available on the market are natural products as found in nature or compounds designed based on the structure and activity of these natural products. Methods: This study evaluated the in vitro antiparasitic activity of a series of previously synthesized stilbene and terphenyl compounds in T. cruzi epimastigotes and intracellular amastigotes. The action of the most selective compounds was investigated by flow cytometric analysis to evaluate the mechanism of cell death. The ability to induce apoptosis or caspase-1 inflammasomes was assayed in macrophages infected with T. cruzi after treatment, comparing it with that of Nifurtimox. Results: The stilbene ST18 was the most potent compound of the series. It was slightly less active than Nifurtimox in epimastigotes but most active in intracellular amastigotes. Compared to Nifurtimox, it was markedly less cytotoxic when tested in vitro on normal cells. ST18 was able to induce a marked increase in parasites positive for Annexin V and monodansylcadaverine. Moreover, ST18 induced the activation, in infected macrophages, of caspase-1, a conserved enzyme that plays a major role in controlling parasitemia, host survival and the onset of the adaptive immune response in Trypanosoma infection. Conclusions: The antiparasitic activity of ST18 together with its ability to activate caspase-1 in infected macrophages and its low toxicity toward normal cells makes this compound interesting for further clinical investigation

    TTAS a new stilbene derivative that induces apoptosis in Leishmania infantum.

    Get PDF
    Leishmania parasites are able to undergo apoptosis (programmed cell death), similarly to mammalian cells. Recently it was demonstrated in vitro the anti-leishmanial effect of some natural and synthetic stilbenoids including resveratrol and piceatannol. In this study we evaluated the Leishmanicidal activity of a pool of stilbene derivatives which had previously shown high apoptotic efficacy against neoplastic cells. All the compounds tested were capable to decrease the parasite viability in a dose-dependent manner. Trans-stilbenes proved to be markedly more effective than cis-isomers. This was different from that observed in tumor cells in which cis-stilbenes were more potent cytotoxic agents. Trans-3,4',5-trimethoxy-3'-amino-stilbene (TTAS) was the most active stilbene showing in Leishmania infantum a LD(50) value of 2.6 ÎĽg/mL. In contrast TTAS showed a low toxicity when tested on normal hemopoietic cells. This compound induced apoptosis in parasites by disrupting the mitochondrial membrane potential. Moreover it shows the ability to block Leishmania parasites in G(2)-M phase of cell cycle in agreement with the data obtained by affinity chromatography that identify tubulin as the putative target of TTAS. In conclusion, our results indicate that some stilbene derivatives are highly effective as anti-leishmanial agents and TTAS represents a pro-apoptotic agent in Leishmania parasites that merit further in vivo investigation

    Structure and mechanics of supporting cells in the guinea pig organ of Corti.

    Get PDF
    The mechanical properties of the mammalian organ of Corti determine its sensitivity to sound frequency and intensity, and the structure of supporting cells changes progressively with frequency along the cochlea. From the apex (low frequency) to the base (high frequency) of the guinea pig cochlea inner pillar cells decrease in length incrementally from 75-55 µm whilst the number of axial microtubules increases from 1,300-2,100. The respective values for outer pillar cells are 120-65 µm and 1,500-3,000. This correlates with a progressive decrease in the length of the outer hair cells from >100 µm to 20 µm. Deiters'cell bodies vary from 60-50 µm long with relatively little change in microtubule number. Their phalangeal processes reflect the lengths of outer hair cells but their microtubule numbers do not change systematically. Correlations between cell length, microtubule number and cochlear location are poor below 1 kHz. Cell stiffness was estimated from direct mechanical measurements made previously from isolated inner and outer pillar cells. We estimate that between 200 Hz and 20 kHz axial stiffness, bending stiffness and buckling limits increase, respectively,~3, 6 and 4 fold for outer pillar cells, ~2, 3 and 2.5 fold for inner pillar cells and ~7, 20 and 24 fold for the phalangeal processes of Deiters'cells. There was little change in the Deiters'cell bodies for any parameter. Compensating for effective cell length the pillar cells are likely to be considerably stiffer than Deiters'cells with buckling limits 10-40 times greater. These data show a clear relationship between cell mechanics and frequency. However, measurements from single cells alone are insufficient and they must be combined with more accurate details of how the multicellular architecture influences the mechanical properties of the whole organ

    Novel antiproliferative chimeric compounds with marked histone deacetylase inhibitory activity

    Get PDF
    Given our interest in finding potential antitumor agents and in view of the multifactorial mechanistic nature of cancer, in the present work, taking advantage of the multifunctional ligands approach, new chimeric molecules were designed and synthesized by combining in single chemical entities structural features of SAHA, targeting histone deacetylases (HDACs), with substituted stilbene or terphenyl derivatives previously obtained by us and endowed with antiproliferative and pro-apoptotic activity. The new chimeric derivatives were characterized with respect to their cytotoxic activity and their effects on cell cycle progression on different tumor cell lines, as well as their HDACs inhibition. Among the other, trans -6 showed the most interesting biological profile, as it exhibited a strong pro-apoptotic activity in tumor cell lines in comparison with both of its parent compounds and a marked HDAC inhibition

    Novel iodoacetamido benzoheterocyclic derivatives with potent antileukemic activity are inhibitors of STAT5 phosphorylation

    Get PDF
    Signal Transducer and Activator of Transcription 5 (STAT5) protein, a component of the STAT family of signaling proteins, is considered to be an attractive therapeutic target because of its involvement in the progression of acute myeloid leukemia. In an effort to discover potent molecules able to inhibit the phosphorylation-activation of STAT5, twenty-two compounds were synthesized and evaluated on the basis of our knowledge of the activity of 2-(3′,4′,5′-trimethoxybenzoyl)-3-iodoacetamido-6-methoxy benzo[b]furan derivative 1 as a potent STAT5 inhibitor. Most of these molecules, structurally related to compound 1, were characterized by the presence of a common 3′,4′,5′-trimethoxybenzoyl moiety at the 2-position of different benzoheterocycles such as benzo[b]furan, benzo[b]thiophene, indole and N-methylindole. Effects on biological activity of the iodoacetamido group and of different moieties (methyl and methoxy) at the C-3 to C-7 positions were examined. In the series of benzo[b]furan derivatives, moving the iodoacetylamino group from the C-4 to the C-5 or C-6 positions did not significantly affect antiproliferative activity. Compounds 4, 15, 20 and 23 blocked STAT5 signals and induced apoptosis of K562 BCR-ABL positive cells. For compound 23, the trimethoxybenzoyl moiety at the 2-position of the benzo[b]furan core was not essential for potent inhibition of STAT5 activation
    • …
    corecore