5,730 research outputs found

    Scanning tunneling spectroscopic studies of the pairing state of cuprate superconductors

    Get PDF
    Quasiparticle tunneling spectra of both hole-doped (p-type) and electron-doped (n-type) cuprates are studied using a low-temperature scanning tunneling microscope. The results reveal that neither the pairing symmetry nor the pseudogap phenomenon is universal among all cuprates, and that the response of n-type cuprates to quantum impurities is drastically different from that of the p-type cuprates. The only ubiquitous features among all cuprates appear to be the strong electronic correlation and the nearest-neighbor antiferromagnetic Cu2+-Cu2+ coupling in the CuO2 planes

    Propagation of a short laser pulse in a plasma

    Get PDF
    The propagation of an electromagnetic pulse in a plasma is studied for pulse durations that are comparable to the plasma period. When the carrier frequency of the incident pulse is much higher than the plasma frequency, the pulse propagates without distortion at its group speed. When the carrier frequency is comparable to the plasma frequency, the pulse is distorted and leaves behind it an electromagnetic wake.Comment: 6 pages, 5 figures, REVTeX. To be published in Physical Review E, vol. 56, December 1, 199

    Electrodynamics of the vortex lattice in untwinned YBaCuO by complex impedance measurements

    Full text link
    We report complex impedance measurements in an untwinned YBaCuO crystal. Our broad frequency range covers both the quasi static response and the resistive response of the vortex lattice. It allow us to characterize the irreversibility line without the need of any frequency dependent pinning parameters. We confirm the validity of the two modes model of vortex dynamic, and extract both the surface critical current and the flux flow resistivity around the first order transition TmT_{m}. This latter is identified by the abrupt loss of pinning and by an unexpected step of ρff(T)\rho_{ff}(T) at TmT_{m}.Comment: accepted for publication in EPJ

    Spatial homogeneity and doping dependence of quasiparticle tunneling spectra in cuprate superconductors

    Get PDF
    Scanning tunneling spectroscopy (STS) studies reveal long-range (similar to 100 nm) spatial homogeneity in optimally and underdoped superconducting YBa2Cu3O7-delta (YBCO) single crystals and thin films, and macroscopic spatial modulations in overdoped (Y0.7Ca0.3)BaCu3O7-delta (Ca-YBCO) epitaxial films. In contrast, STS on an optimally doped YBa2(Cu0.9934Zn0.0026Mg0.004)(3)O-6.9 single crystal exhibits strong spatial modulations and suppression of superconductivity over a microscopic scale near the Zn or Mg impurity sites, and the global pairing potential is also reduced relative to that of optimally doped YBCO, suggesting strong pair-breaking effects of the non-magnetic impurities. The spectral characteristics are consistent with d(x2-y2) pairing symmetry for the optimally and underdoped YBCO, and with (d(x2-y2) + s) for the overdoped Ca-YBCO. The doping-dependent pairing symmetry suggests interesting changes in the superconducting ground state, and is consistent with the presence of nodal quasiparticles for all doping levels. The maximum energy gap Delta (d) is non-monotonic with the doping level, while the (2 Delta (d)/k(B)T(c)) ratio increases with decreasing doping. The similarities and contrasts between the spectra of YBCO and of Bi2Sr2CaCu2O8+x are discussed

    c-axis Raman Scattering in MgB2: Observation of a Dirty-Limit Gap in the pi-bands

    Full text link
    Raman scattering spectra from the ac-face of thick MgB2 single crystals were measured in zz, xz and xx polarisations. In zz and xz polarisations a threshold at around 29 cm^{-1} forms in the below Tc continuum but no pair-breaking peak is seen, in contrast to the sharp pair-breaking peak at around 100 cm^{-1} seen in xx polarisation. The zz and xz spectra are consistent with Raman scattering from a dirty superconductor while the sharp peak in the xx spectra argues for a clean system. Analysis of the spectra resolves this contradiction, placing the larger and smaller gap magnitudes in the sigma and pi bands, and indicating that relatively strong impurity scattering is restricted to the pi bands.Comment: Revised manuscript accepted for publication in Physical Review Letter

    Electric Conductivity of the Zero-gap Semiconducting State in Alpha-(BEDT-TTF)2I3 Salt

    Full text link
    The electric conductivity which reveals the zero gap semiconducting (ZGS) state has been investigated as the function of temperature TT and life time τ\tau in order to understand the ZGS state in quarter-filled α\alpha-(BEDT-TTF)2_2I3_3 salt with four sites in the unit cell. By treating τ\tau as a parameter and making use of the one-loop approximation, it is found that the conductivity is proportional to TT and τ\tau for kB≫ℏ/τk_B\gg\hbar/\tau and independent of TT and τ\tau for kBTâ‰Șℏ/τk_B T\ll\hbar/\tau. Further the conductivity being independent of TT in the ZGS state is examined in terms of Born approximation for the impurity cattering.Comment: 5 pages, 4 figures, submitted to J. Phys. Soc. Jp

    The vortex depinning transition in untwinned YBaCuO using complex impedance measurements

    Full text link
    We present surface impedance measurement of the vortex linear response in a large untwinned YBCO crystal. The depinning spectra obtained over a broad frequency range (100 Hz- 30 MHz) are those of a surface pinned vortex lattice with a free flux flow resistivity (two modes response). The critical current in the "Campbell" like regime and the flux flow resistivity in the dissipative regime are extracted. Those two parameters are affected by the first order transition, showing that this transition may be related to the electronic state of vortices.Comment: to be published in the proceedings of M2S RI
    • 

    corecore