227 research outputs found

    Long-term power-law fluctuation in Internet traffic

    Get PDF
    Power-law fluctuation in observed Internet packet flow are discussed. The data is obtained by a multi router traffic grapher (MRTG) system for 9 months. The internet packet flow is analyzed using the detrended fluctuation analysis. By extracting the average daily trend, the data shows clear power-law fluctuations. The exponents of the fluctuation for the incoming and outgoing flow are almost unity. Internet traffic can be understood as a daily periodic flow with power-law fluctuations.Comment: 10 pages, 8 figure

    Finite automata with advice tapes

    Full text link
    We define a model of advised computation by finite automata where the advice is provided on a separate tape. We consider several variants of the model where the advice is deterministic or randomized, the input tape head is allowed real-time, one-way, or two-way access, and the automaton is classical or quantum. We prove several separation results among these variants, demonstrate an infinite hierarchy of language classes recognized by automata with increasing advice lengths, and establish the relationships between this and the previously studied ways of providing advice to finite automata.Comment: Corrected typo

    Temperature inversion symmetry in the Casimir effect with an antiperiodic boundary condition

    Full text link
    We present explicitly another example of a temperature inversion symmetry in the Casimir effect for a nonsymmetric boundary condition. We also give an interpretation for our result.Comment: 4 page

    Multi-State Image Restoration by Transmission of Bit-Decomposed Data

    Get PDF
    We report on the restoration of gray-scale image when it is decomposed into a binary form before transmission. We assume that a gray-scale image expressed by a set of Q-Ising spins is first decomposed into an expression using Ising (binary) spins by means of the threshold division, namely, we produce (Q-1) binary Ising spins from a Q-Ising spin by the function F(\sigma_i - m) = 1 if the input data \sigma_i \in {0,.....,Q-1} is \sigma_i \geq m and 0 otherwise, where m \in {1,....,Q-1} is the threshold value. The effects of noise are different from the case where the raw Q-Ising values are sent. We investigate which is more effective to use the binary data for transmission or to send the raw Q-Ising values. By using the mean-field model, we first analyze the performance of our method quantitatively. Then we obtain the static and dynamical properties of restoration using the bit-decomposed data. In order to investigate what kind of original picture is efficiently restored by our method, the standard image in two dimensions is simulated by the mean-field annealing, and we compare the performance of our method with that using the Q-Ising form. We show that our method is more efficient than the one using the Q-Ising form when the original picture has large parts in which the nearest neighboring pixels take close values.Comment: latex 24 pages using REVTEX, 10 figures, 4 table

    Hadamard States and Adiabatic Vacua

    Full text link
    Reversing a slight detrimental effect of the mailer related to TeXabilityComment: 10pages, LaTeX (RevTeX-preprint style

    Magnetic von-Neumann lattice for two-dimensional electrons in the magnetic field

    Full text link
    One-particle eigenstates and eigenvalues of two-dimensional electrons in the strong magnetic field with short range impurity and impurities, cosine potential, boundary potential, and periodic array of short range potentials are obtained by magnetic von-Neumann lattice in which Landau level wave functions have minimum spatial extensions. We find that there is a dual correspondence between cosine potential and lattice kinetic term and that the representation based on the von-Neumann lattice is quite useful for solving the system's dynamics.Comment: 21pages, figures not included, EPHOU-94-00

    Self-organization of traffic jams in cities: effects of stochastic dynamics and signal periods

    Full text link
    We propose a cellular automata model for vehicular traffic in cities by combining (and appropriately modifying) ideas borrowed from the Biham-Middleton-Levine (BML) model of city traffic and the Nagel-Schreckenberg (NS) model of highway traffic. We demonstrate a phase transition from the "free-flowing" dynamical phase to the completely "jammed" phase at a vehicle density which depends on the time periods of the synchronized signals and the separation between them. The intrinsic stochasticity of the dynamics, which triggers the onset of jamming, is similar to that in the NS model, while the phenomenon of complete jamming through self-organization as well as the final jammed configurations are similar to those in the BML model. Using our new model, we have made an investigation of the time-dependence of the average speeds of the cars in the "free-flowing" phase as well as the dependence of flux and jamming on the time period of the signals.Comment: 4 pages, REVTEX, 4 eps figures include

    Calibration of the Particle Density in Cellular-Automaton Models for Traffic Flow

    Full text link
    We introduce density dependence of the cell size in cellular-automaton models for traffic flow, which allows a more precise correspondence between real-world phenomena and what observed in simulation. Also, we give an explicit calibration of the particle density particularly for the asymmetric simple exclusion process with some update rules. We thus find that the present method is valid in that it reproduces a realistic flow-density diagram.Comment: 2 pages, 2 figure

    Correlation between star formation activity and electron density of ionized gas at z=2.5

    Get PDF
    In the redshift interval of 2<z<32<z<3, the physical conditions of the inter-stellar medium (ISM) in star-forming galaxies are likely to be different from those in the local Universe because of lower gaseous metallicities, higher gas fractions, and higher star formation activities. In fact, observations suggest that higher electron densities, higher ionization parameters, and harder UV radiation fields are common. In this paper, based on the spectra of Hα\alpha-selected star-forming galaxies at z=2.5z=2.5 taken with Multi-Object Spectrometer for InfraRed Exploration (MOSFIRE) on Keck-1 telescope, we measure electron densities (nen_e) using the oxygen line ratio ( [OII]λλ\lambda\lambda3726,3729), and investigate the relationships between the electron density of ionized gas and other physical properties. As a result, we find that the specific star formation rate (sSFR) and the surface density of SFR (ΣSFR\Sigma_\mathrm{SFR}) are correlated with the electron density at z=2.5z=2.5 for the first time. The ΣSFRne\Sigma_\mathrm{SFR}-n_e relation is likely to be linked to the star formation law in HII regions (where star formation activity is regulated by interstellar pressure). Moreover, we discuss the mode of star formation in those galaxies. The correlation between sSFR and ΣSFR\Sigma_\mathrm{SFR} suggests that highly star-forming galaxies (with high sSFR) tend to be characterized by higher surface densities of star formation (ΣSFR\Sigma_\mathrm{SFR}) and thus higher nen_e values as well.Comment: 7 pages, 1 table, 4 figures, title is changed, accepted to MNRA
    corecore