4,907 research outputs found
Crop phenology literature review for corn, soybean, wheat, barley, sorghum, rice, cotton, and sunflower
There are no author-identified significant results in this report
Crop yield literature review for AgRISTARS crops: Corn, soybeans, wheat, barley, sorghum, rice, cotton, and sunflowers
There are no author-identified significant results in this report
Laboratory measurements and theoretical calculations of O_2 A band electric quadrupole transitions
Frequency-stabilized cavity ring-down spectroscopy was utilized to measure electric quadrupole transitions within the ^(16)O_2 A band, b^1ÎŁ^+_g â X^3ÎŁ^-_g(0,0). We report quantitative measurements (relative uncertainties in intensity measurements from 4.4% to 11%) of nine ultraweak transitions in the ^NO, ^PO, ^RS, and ^TS branches with line intensities ranging from 3Ă10^(â30) to 2Ă10^(â29) cm molec.^(â1). A thorough discussion of relevant noise sources and uncertainties in this experiment and other cw-cavity ring-down spectrometers is given. For short-term averaging (t<100 s), we estimate a noise-equivalent absorption of 2.5Ă10^(â10) cm^(â1) Hz^(â1/2). The detection limit was reduced further by co-adding up to 100 spectra to yield a minimum detectable absorption coefficient equal to 1.8Ă10^(â11) cm^(â1), corresponding to a line intensity of ~2.5Ă10^(â31) cm molec.^(â1). We discuss calculations of electric quadrupole line positions based on a simultaneous fit of the ground and upper electronic state energies which have uncertainties <3 MHz, and we present calculations of electric quadrupole matrix elements and line intensities. The electric quadrupole line intensity calculations and measurements agreed on average to 5%, which is comparable to our average experimental uncertainty. The calculated electric quadrupole band intensity was 1.8(1)Ă10^(â27) cm molec.â1 which is equal to only ~8Ă10^(â6) of the magnetic dipole band intensity
Recommended from our members
Storyline description of Southern Hemisphere midlatitude circulation and precipitation response to greenhouse gas forcing
As evidence of climate change strengthens, knowledge of its regional implications becomes an urgent need for decision making. Current understanding of regional precipitation changes is substantially limited by our understanding of the atmospheric circulation response to climate change, which to a high degree remains uncertain. This uncertainty is reflected in the wide spread in atmospheric circulation changes projected in multimodel ensembles, which cannot be directly interpreted in a probabilistic sense. The uncertainty can instead be represented by studying a discrete set of physically plausible storylines of atmospheric circulation changes. By mining CMIP5 model output, here we take this broader perspective and develop storylines for Southern Hemisphere (SH) midlatitude circulation changes, conditioned on the degree of global-mean warming, based on the climate responses of two remote drivers: the enhanced warming of the tropical upper troposphere and the strengthening of the stratospheric polar vortex. For the three continental domains in the SH, we analyse the precipitation changes under each storyline. To allow comparison with previous studies, we also link both circulation and precipitation changes with those of the Southern Annular Mode. Our results show that the response to tropical warming leads to a strengthening of the midlatitude westerly winds, whilst the response to a delayed breakdown (for DJF) or strengthening (for JJA) of the stratospheric vortex leads to a poleward shift of the westerly winds and the storm tracks. However, the circulation response is not zonally symmetric and the regional precipitation storylines for South America, South Africa, South Australia and New Zealand exhibit quite specific dependencies on the two remote drivers, which are not well represented by changes in the Southern Annular Mode
Preliminary evaluation of spectral, normal and meteorological crop stage estimation approaches
Several of the projects in the AgRISTARS program require crop phenology information, including classification, acreage and yield estimation, and detection of episodal events. This study evaluates several crop calendar estimation techniques for their potential use in the program. The techniques, although generic in approach, were developed and tested on spring wheat data collected in 1978. There are three basic approaches to crop stage estimation: historical averages for an area (normal crop calendars), agrometeorological modeling of known crop-weather relationships agrometeorological (agromet) crop calendars, and interpretation of spectral signatures (spectral crop calendars). In all, 10 combinations of planting and biostage estimation models were evaluated. Dates of stage occurrence are estimated with biases between -4 and +4 days while root mean square errors range from 10 to 15 days. Results are inconclusive as to the superiority of any of the models and further evaluation of the models with the 1979 data set is recommended
Resistivity as a function of temperature for models with hot spots on the Fermi surface.
We calculate the resistivity as a function of temperature for two
models currently discussed in connection with high temperature
superconductivity: nearly antiferromagnetic Fermi liquids and models with van
Hove singularities on the Fermi surface. The resistivity is calculated
semiclassicaly by making use of a Boltzmann equation which is formulated as a
variational problem. For the model of nearly antiferromagnetic Fermi liquids we
construct a better variational solution compared to the standard one and we
find a new energy scale for the crossover to the behavior at
low temperatures. This energy scale is finite even when the spin-fluctuations
are assumed to be critical. The effect of additional impurity scattering is
discussed. For the model with van Hove singularities a standard ansatz for the
Boltzmann equation is sufficient to show that although the quasiparticle
lifetime is anomalously short, the resistivity .Comment: Revtex 3.0, 8 pages; figures available upon request. Submitted to
Phys. Rev. B
Experimental Implementation of Logical Bell State Encoding
Liquid phase NMR is a general purpose test-bed for developing methods of
coherent control relevant to quantum information processing. Here we extend
these studies to the coherent control of logical qubits and in particular to
the unitary gates necessary to create entanglement between logical qubits. We
report an experimental implementation of a conditional logical gate between two
logical qubits that are each in decoherence free subspaces that protect the
quantum information from fully correlated dephasing.Comment: 9 Pages, 5 Figure
A logic road from special relativity to general relativity
We present a streamlined axiom system of special relativity in first-order
logic. From this axiom system we "derive" an axiom system of general relativity
in two natural steps. We will also see how the axioms of special relativity
transform into those of general relativity. This way we hope to make general
relativity more accessible for the non-specialist
- âŠ