4,907 research outputs found

    Crop phenology literature review for corn, soybean, wheat, barley, sorghum, rice, cotton, and sunflower

    Get PDF
    There are no author-identified significant results in this report

    Laboratory measurements and theoretical calculations of O_2 A band electric quadrupole transitions

    Get PDF
    Frequency-stabilized cavity ring-down spectroscopy was utilized to measure electric quadrupole transitions within the ^(16)O_2 A band, b^1Σ^+_g ← X^3Σ^-_g(0,0). We report quantitative measurements (relative uncertainties in intensity measurements from 4.4% to 11%) of nine ultraweak transitions in the ^NO, ^PO, ^RS, and ^TS branches with line intensities ranging from 3×10^(−30) to 2×10^(−29) cm molec.^(−1). A thorough discussion of relevant noise sources and uncertainties in this experiment and other cw-cavity ring-down spectrometers is given. For short-term averaging (t<100 s), we estimate a noise-equivalent absorption of 2.5×10^(−10) cm^(−1) Hz^(−1/2). The detection limit was reduced further by co-adding up to 100 spectra to yield a minimum detectable absorption coefficient equal to 1.8×10^(−11) cm^(−1), corresponding to a line intensity of ~2.5×10^(−31) cm molec.^(−1). We discuss calculations of electric quadrupole line positions based on a simultaneous fit of the ground and upper electronic state energies which have uncertainties <3 MHz, and we present calculations of electric quadrupole matrix elements and line intensities. The electric quadrupole line intensity calculations and measurements agreed on average to 5%, which is comparable to our average experimental uncertainty. The calculated electric quadrupole band intensity was 1.8(1)×10^(−27) cm molec.−1 which is equal to only ~8×10^(−6) of the magnetic dipole band intensity

    Preliminary evaluation of spectral, normal and meteorological crop stage estimation approaches

    Get PDF
    Several of the projects in the AgRISTARS program require crop phenology information, including classification, acreage and yield estimation, and detection of episodal events. This study evaluates several crop calendar estimation techniques for their potential use in the program. The techniques, although generic in approach, were developed and tested on spring wheat data collected in 1978. There are three basic approaches to crop stage estimation: historical averages for an area (normal crop calendars), agrometeorological modeling of known crop-weather relationships agrometeorological (agromet) crop calendars, and interpretation of spectral signatures (spectral crop calendars). In all, 10 combinations of planting and biostage estimation models were evaluated. Dates of stage occurrence are estimated with biases between -4 and +4 days while root mean square errors range from 10 to 15 days. Results are inconclusive as to the superiority of any of the models and further evaluation of the models with the 1979 data set is recommended

    Resistivity as a function of temperature for models with hot spots on the Fermi surface.

    Full text link
    We calculate the resistivity ρ\rho as a function of temperature TT for two models currently discussed in connection with high temperature superconductivity: nearly antiferromagnetic Fermi liquids and models with van Hove singularities on the Fermi surface. The resistivity is calculated semiclassicaly by making use of a Boltzmann equation which is formulated as a variational problem. For the model of nearly antiferromagnetic Fermi liquids we construct a better variational solution compared to the standard one and we find a new energy scale for the crossover to the ρ∝T2\rho\propto T^2 behavior at low temperatures. This energy scale is finite even when the spin-fluctuations are assumed to be critical. The effect of additional impurity scattering is discussed. For the model with van Hove singularities a standard ansatz for the Boltzmann equation is sufficient to show that although the quasiparticle lifetime is anomalously short, the resistivity ρ∝T2ln⁥(1/T)\rho\propto T^2\ln(1/T).Comment: Revtex 3.0, 8 pages; figures available upon request. Submitted to Phys. Rev. B

    Experimental Implementation of Logical Bell State Encoding

    Get PDF
    Liquid phase NMR is a general purpose test-bed for developing methods of coherent control relevant to quantum information processing. Here we extend these studies to the coherent control of logical qubits and in particular to the unitary gates necessary to create entanglement between logical qubits. We report an experimental implementation of a conditional logical gate between two logical qubits that are each in decoherence free subspaces that protect the quantum information from fully correlated dephasing.Comment: 9 Pages, 5 Figure

    A logic road from special relativity to general relativity

    Full text link
    We present a streamlined axiom system of special relativity in first-order logic. From this axiom system we "derive" an axiom system of general relativity in two natural steps. We will also see how the axioms of special relativity transform into those of general relativity. This way we hope to make general relativity more accessible for the non-specialist
    • 

    corecore