167 research outputs found

    A General Phase Matching Condition for Quantum Searching Algorithm

    Full text link
    A general consideration on the phase rotations in quantum searching algorithm is taken in this work. As four phase rotations on the initial state, the marked states, and the states orthogonal to them are taken account, we deduce a phase matching condition for a successful search. The optimal options for these phase are obtained consequently.Comment: 3 pages, 3 figure

    Araceae of Mulu National Park II: A new karst-obligated Homalomena[Chamaecladon clade]

    Get PDF
    Homalomena hottae is described and illustrated as a new species of microscopically scintillating-velutinous leaved aroid from the Karst limestone of Mulu National Park, to where it is locally restricted. Homalomena hottae is compared with the two currently described Bornean species with similarly scintillating foliage. Notes on the pollination biology of Homalomena hottae are given, and the three described Bornean species of scintillating Chamaecladon clade species are compared in a key

    Araceae of Mulu National Park. I. Four new species of Schismatoglottis (Araceae)

    Get PDF
    Four new species of Schismatoglottis are described and illustrated from Mulu National Park in Malaysian Borneo: Schismatoglottis fossae (Patentinervia Clade), S. roseopedes and S. serratodentata (Calyptrata Clade) and S. pellucida (currently unplaced but likely in the Multinervia clade). A brief summary is provided of botanical exploration at Mulu, notably where pertinent to aroid botany

    A Gene Co-Expression Network-Based Drug Repositioning Approach Identifies Candidates for Treatment of Hepatocellular Carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is a malignant liver cancer that continues to increase deaths worldwide owing to limited therapies and treatments. Computational drug repurposing is a promising strategy to discover potential indications of existing drugs. In this study, we present a systematic drug repositioning method based on comprehensive integration of molecular signatures in liver cancer tissue and cell lines. First, we identify robust prognostic genes and two gene co-expression modules enriched in unfavorable prognostic genes based on two independent HCC cohorts, which showed great consistency in functional and network topology. Then, we screen 10 genes as potential target genes for HCC on the bias of network topology analysis in these two modules. Further, we perform a drug repositioning method by integrating the shRNA and drug perturbation of liver cancer cell lines and identifying potential drugs for every target gene. Finally, we evaluate the effects of the candidate drugs through an in vitro model and observe that two identified drugs inhibited the protein levels of their corresponding target genes and cell migration, also showing great binding affinity in protein docking analysis. Our study demonstrates the usefulness and efficiency of network-based drug repositioning approach to discover potential drugs for cancer treatment and precision medicine approach

    Prediction of drug candidates for clear cell renal cell carcinoma using a systems biology-based drug repositioning approach

    Get PDF
    Background: The response rates of the clinical chemotherapies are still low in clear cell renal cell carcinoma (ccRCC). Computational drug repositioning is a promising strategy to discover new uses for existing drugs to treat patients who cannot get benefits from clinical drugs. Methods: We proposed a systematic approach which included the target prediction based on the co-expression network analysis of transcriptomics profiles of ccRCC patients and drug repositioning for cancer treatment based on the analysis of shRNA- and drug-perturbed signature profiles of human kidney cell line. Findings: First, based on the gene co-expression network analysis, we identified two types of gene modules in ccRCC, which significantly enriched with unfavorable and favorable signatures indicating poor and good survival outcomes of patients, respectively. Then, we selected four genes, BUB1B, RRM2, ASF1B and CCNB2, as the potential drug targets based on the topology analysis of modules. Further, we repurposed three most effective drugs for each target by applying the proposed drug repositioning approach. Finally, we evaluated the effects of repurposed drugs using an in vitro model and observed that these drugs inhibited the protein levels of their corresponding target genes and cell viability. Interpretation: These findings proved the usefulness and efficiency of our approach to improve the drug repositioning researches for cancer treatment and precision medicine. Funding: This study was funded by Knut and Alice Wallenberg Foundation and Bash Biotech Inc., San Diego, CA, USA

    Occupational Bladder Cancer in a 4,4′-Methylenebis(2-chloroaniline) (MBOCA)-Exposed Worker

    Get PDF
    A 52-year-old male chemical worker was admitted to the hospital with a history of paroxysmal microscopic hematuria for about 2 years and nocturia with gross hematuria about five times per night for 2 months. He was a nonsmoker and denied a history of any other bladder carcinogen exposure except for occasional pesticide application during agricultural work. Intravenous urogram imaging showed a mass occupying half of the bladder capacity. Cystoscopy revealed a mass over the left dome of the bladder. Cystoscopic biopsy revealed a grade 3 invasive transitional cell carcinoma with marked necrosis. From 1987 until hospital admission in 2001, the patient had worked in a company that produced the 4,4′-methylenebis(2-chloroaniline) (MBOCA) curing agent. He did not wear any personal protective equipment during work. Ambient air MBOCA levels in the purification process area (0.23–0.41 mg/m(3)) exceeded the U.S. Occupational Safety and Health Administration’s permissible exposure level. Urinary MBOCA levels (267.9–15701.1 μg/g creatinine) far exceeded the California Occupational Safety and Health Administration’s reference value of 100 μg/L. This patient worked in the purification process with occupational exposure to MBOCA for 14 years. According to the environmental and biologic monitoring data and latency period, and excluding other potential bladder carcinogen exposure, this worker was diagnosed as having occupational bladder cancer due to high exposure to MBOCA through inhalation or dermal absorption in the purification area. This case finding supports that MBOCA is a potential human carcinogen. Safe use of skin-protective equipment and respirators is required to prevent workers from MBOCA exposure

    Reduced Health-Related Quality of Life in Elders with Frailty: A Cross-Sectional Study of Community-Dwelling Elders in Taiwan

    Get PDF
    PURPOSE: Exploring the domains and degrees of health-related quality of life (HRQOL) that are affected by the frailty of elders will help clinicians understand the impact of frailty. This association has not been investigated in community-dwelling elders. Therefore, we examined the domains and degree of HRQOL of elders with frailty in the community in Taiwan. METHODS: A total of 933 subjects aged 65 years and over were recruited in 2009 from a metropolitan city in Taiwan. Using an adoption of the Fried criteria, frailty was defined by five components: shrinking, weakness, poor endurance and energy, slowness, and low physical activity level. HRQOL was assessed by the short form 36 (SF-36). The multiple linear regression model was used to test the independent effects of frailty on HRQOL. RESULTS: After multivariate adjustment, elders without frailty reported significantly better health than did the pre-frail and frail elders on all scales, and the pre-frail elders reported better health than did the frail elders for all scales except the scales of role limitation due to physical and emotional problems and the Mental Component Summary (MCS). The significantly negative differences between frail and robust elders ranged from 3.58 points for the MCS to 22.92 points for the physical functioning scale. The magnitude of the effects of frail components was largest for poor endurance and energy, and next was for slowness. The percentages of the variations of these 10 scales explained by all factors in the models ranged from 11.1% (scale of role limitation due to emotional problems) to 49.1% (scale of bodily pain). CONCLUSIONS: Our study demonstrates that the disabilities in physical health inherent in frailty are linked to a reduction in HRQOL. Such an association between clinical measures and a generic measure of the HRQOL may offer clinicians new information to understand frailty and to conceptualize it within the broader context of disability

    Imaging of Zebrafish In Vivo with Second-Harmonic Generation Reveals Shortened Sarcomeres Associated with Myopathy Induced by Statin

    Get PDF
    We employed second-harmonic generation (SHG) imaging and the zebrafish model to investigate the myopathy caused by statin in vivo with emphasis on the altered microstructures of the muscle sarcomere, the fundamental contractile element of muscles. This approach derives an advantage of SHG imaging to observe the striated skeletal muscle of living zebrafish based on signals produced mainly from the thick myosin filament of sarcomeres without employing exogenous labels, and eliminates concern about the distortion of muscle structures caused by sample preparation in conventional histological examination. The treatment with statin caused a significantly shortened sarcomere relative to an untreated control (1.73±0.09 µm vs 1.91±0.08 µm, P<0.05) while the morphological integrity of the muscle fibers remained largely intact. Mechanistic tests indicated that this microstructural disorder was associated with the biosynthetic pathway of cholesterol, or, specifically, with the impaired production of mevalonate by statins. This microstructural disorder exhibited a strong dependence on both the dosage and the duration of treatment, indicating a possibility to assess the severity of muscle injury according to the altered length of the sarcomeres. In contrast to a conventional assessment of muscle injury using clinical biomarkers in blood, such as creatine kinase that is released from only disrupted myocytes, the ability to determine microstructural modification of sarcomeres allows diagnosis of muscle injury before an onset of conventional clinical symptoms. In light of the increasing prevalence of the incidence of muscle injuries caused by new therapies, our work consolidates the combined use of the zebrafish and SHG imaging as an effective and sensitive means to evaluate the safety profile of new therapeutic targets in vivo
    corecore