163 research outputs found

    Medicaid managed care: Issues for beneficiaries with disabilities

    Get PDF
    Background: States are increasingly turning to managed care arrangements to control costs in their Medicaid programs. Historically, such arrangements have excluded people with disabilities who use long-term services and supports (LTSS) due to their complex needs. Now, however, some states are also moving this population to managed care. Little is known about the experiences of people with disabilities during and after this transition. Objective: To document experiences of Medicaid enrollees with disabilities using long-term services and supports during transition to Medicaid managed care in Kansas. Methods: During the spring of 2013, 105 Kansans with disabilities using Medicaid long-term services and supports (LTSS) were surveyed via telephone or in-person as they transitioned to managed care. Qualitative data analysis of survey responses was conducted to learn more about the issues encountered by people with disabilities under Medicaid managed care. Results: Respondents encountered numerous disability-related difficulties, particularly with transportation, durable medical equipment, care coordination, communication, increased out of pocket costs, and access to care. Conclusions: As more states move people with disabilities to Medicaid managed care, it is critically important to address these identified issues for a population that often experiences substantial health disparities and a smaller margin of health. It is hoped that the early experiences reported here can inform policy-makers in other states as they contemplate and design similar programs

    Plasminogen activator levels are influenced by location and varicosity in greater saphenous vein

    Get PDF
    AbstractPurpose: The plasminogen system, which includes tissue type plasminogen activator (tPA), urokinase type plasminogen activator (uPA), and their main inhibitor, plasminogen activator inhibitor type 1 (PAI-1), plays a major role in both fibrinolysis and tissue remodeling. This study compares the levels of tPA, uPA, and PAI-1 at the groin and ankle in normal and varicose greater saphenous vein (GSV).Methods: GSV was collected from patients undergoing varicose vein (VV) removal and from normal vein (NV) from arterial bypass procedures. Portions of the GSV at the groin and the ankle were minced and placed in serum-free media for 48 hours. Assays of the supernatants were obtained for tPA, uPA, and PAI-1 protein by enzyme-linked immunosorbent assay. Cyclohexamide and actinomycin D were also added to the media of the VV tissue explant supernatants to inhibit protein and RNA synthesis, respectively.Results: Levels of tPA were significantly higher at the groin (11 ± 2) than the ankle (5 ± 1) in the VV ( p < 0.005), and this trend was also seen in the NV (groin 10 ± 2 and ankle 7 ± 3). Levels of uPA were significantly higher in the groin VV (14 ± 4.3) than in NV (3.0 ± 0.8, p < 0.05). This difference, although not statistically significant, applied to the ankle as well (VV 14.5 ± 6.3 and NV 5.3 ± 2.7). No significant difference was seen between NV and VV for PAI-1 (NV, groin 155 ± 73 and ankle 113 ± 53, VV, groin 161 ± 20 and ankle 142 ± 38) or tPA. Inhibitor studies revealed no significant difference among control, cyclohexamide, and actinomycin D supernatants for tPA, suggesting release of protein rather than active synthesis. In contrast, inhibitor supernatants were significantly lower for uPA and PAI-1 than control supernatants ( p < 0.05), suggesting that uPA and PAI-1 were actively synthesized.Conclusions: In the tissue explant supernatant model uPA and PAI-1 are actively synthesized, but tPA is not. Levels of PAI-1 were comparable in all four groups. Levels of uPA in the varicose GSV were higher than in NV, suggesting a role for uPA in the pathologic makeup of VV. Levels of tPA were higher at the groin versus the ankle position, potentially explaining the previously described increased fibrinolytic activity seen at the groin. (J Vasc Surg 1996;24:719-24.

    IQGAP1 Is Involved in Post-Ischemic Neovascularization by Regulating Angiogenesis and Macrophage Infiltration

    Get PDF
    Neovascularization is an important repair mechanism in response to ischemic injury and is dependent on inflammation, angiogenesis and reactive oxygen species (ROS). IQGAP1, an actin-binding scaffold protein, is a key regulator for actin cytoskeleton and motility. We previously demonstrated that IQGAP1 mediates vascular endothelial growth factor (VEGF)-induced ROS production and migration of cultured endothelial cells (ECs); however, its role in post-ischemic neovascularization is unknown.Ischemia was induced by left femoral artery ligation, which resulted in increased IQGAP1 expression in Mac3(+) macrophages and CD31(+) capillary-like ECs in ischemic legs. Mice lacking IQGAP1 exhibited a significant reduction in the post-ischemic neovascularization as evaluated by laser Doppler blood flow, capillary density and α-actin positive arterioles. Furthermore, IQGAP1(-/-) mice showed a decrease in macrophage infiltration and ROS production in ischemic muscles, leading to impaired muscle regeneration and increased necrosis and fibrosis. The numbers of bone marrow (BM)-derived cells in the peripheral blood were not affected in these knockout mice. BM transplantation revealed that IQGAP1 expressed in both BM-derived cells and tissue resident cells, such as ECs, is required for post-ischemic neovascularization. Moreover, thioglycollate-induced peritoneal macrophage recruitment and ROS production were inhibited in IQGAP1(-/-) mice. In vitro, IQGAP1(-/-) BM-derived macrophages showed inhibition of migration and adhesion capacity, which may explain the defective macrophage recruitment into the ischemic tissue in IQGAP1(-/-) mice.IQGAP1 plays a key role in post-ischemic neovascularization by regulating, not only, ECs-mediated angiogenesis but also macrophage infiltration as well as ROS production. Thus, IQGAP1 is a potential therapeutic target for inflammation- and angiogenesis-dependent ischemic cardiovascular diseases

    Serum Phosphorus and Risk of Cardiovascular Disease, All-Cause Mortality, or Graft Failure in Kidney Transplant Recipients: An Ancillary Study of the FAVORIT Trial Cohort

    Get PDF
    Mild hyperphosphatemia is a putative risk factor for cardiovascular disease [CVD], loss of kidney function, and mortality. Very limited data are available from sizable multicenter kidney transplant recipient (KTR) cohorts assessing the potential relationships between serum phosphorus levels and the development of CVD outcomes, transplant failure, or all-cause mortality

    Toward Innovative, Cost-Effective, and Systemic Solutions to Improve Outcomes and Well-Being of Military Families Affected by Autism Spectrum Disorder

    Get PDF
    The burdens faced by military families who have a child with autism are unique. The usual challenges of securing diagnostic, treatment, and educational services are compounded by life circumstances that include the anxieties of war, frequent relocation and separation, and a demand structure that emphasizes mission readiness and service. Recently established military autism-specific health care benefits set the stage for community-viable and cost-effective solutions that can achieve better outcomes for children and greater well-being for families. Here we argue for implementation of evidence-based solutions focused on reducing age of diagnosis and improving access to early intervention, as well as establishment of a tiered menu of services, individualized to the child and family, that fit with the military ethos and system of health care. Absence of this new model of care could compromise the utility and sustainability of the autism-specific benefit

    Investigation of Cellular and Molecular Responses to Pulsed Focused Ultrasound in a Mouse Model

    Get PDF
    Continuous focused ultrasound (cFUS) has been widely used for thermal ablation of tissues, relying on continuous exposures to generate temperatures necessary to induce coagulative necrosis. Pulsed FUS (pFUS) employs non-continuous exposures that lower the rate of energy deposition and allow cooling to occur between pulses, thereby minimizing thermal effects and emphasizing effects created by non-thermal mechanisms of FUS (i.e., acoustic radiation forces and acoustic cavitation). pFUS has shown promise for a variety of applications including drug and nanoparticle delivery; however, little is understood about the effects these exposures have on tissue, especially with regard to cellular pro-homing factors (growth factors, cytokines, and cell adhesion molecules). We examined changes in murine hamstring muscle following pFUS or cFUS and demonstrate that pFUS, unlike cFUS, has little effect on the histological integrity of muscle and does not induce cell death. Infiltration of macrophages was observed 3 and 8 days following pFUS or cFUS exposures. pFUS increased expression of several cytokines (e.g., IL-1α, IL-1β, TNFα, INFγ, MIP-1α, MCP-1, and GMCSF) creating a local cytokine gradient on days 0 and 1 post-pFUS that returns to baseline levels by day 3 post-pFUS. pFUS exposures induced upregulation of other signaling molecules (e.g., VEGF, FGF, PlGF, HGF, and SDF-1α) and cell adhesion molecules (e.g., ICAM-1 and VCAM-1) on muscle vasculature. The observed molecular changes in muscle following pFUS may be utilized to target cellular therapies by increasing homing to areas of pathology

    Target 2035 - an update on private sector contributions

    Get PDF
    Target 2035, an international federation of biomedical scientists from the public and private sectors, is leveraging ‘open’ principles to develop a pharmacological tool for every human protein. These tools are important reagents for scientists studying human health and disease and will facilitate the development of new medicines. It is therefore not surprising that pharmaceutical companies are joining Target 2035, contributing both knowledge and reagents to study novel proteins. Here, we present a brief progress update on Target 2035 and highlight some of industry's contributions

    Quantitative Analysis of Peripheral Tissue Perfusion Using Spatiotemporal Molecular Dynamics

    Get PDF
    Background: Accurate measurement of peripheral tissue perfusion is challenging but necessary to diagnose peripheral vascular insufficiency. Because near infrared (NIR) radiation can penetrate relatively deep into tissue, significant attention has been given to intravital NIR fluorescence imaging. Methodology/Principal Findings: We developed a new optical imaging-based strategy for quantitative measurement of peripheral tissue perfusion by time-series analysis of local pharmacokinetics of the NIR fluorophore, indocyanine green (ICG). Time-series NIR fluorescence images were obtained after injecting ICG intravenously in a murine hindlimb ischemia model. Mathematical modeling and computational simulations were used for translating time-series ICG images into quantitative pixel perfusion rates and a perfusion map. We could successfully predict the prognosis of ischemic hindlimbs based on the perfusion profiles obtained immediately after surgery, which were dependent on the preexisting collaterals. This method also reflected increases in perfusion and improvements in prognosis of ischemic hindlimbs induced by treatment with vascular endothelial growth factor and COMP-angiopoietin-1. Conclusions/Significance: We propose that this novel NIR-imaging-based strategy is a powerful tool for biomedical studies related to the evaluation of therapeutic interventions directed at stimulating angiogenesis
    • …
    corecore