
Serum Phosphorus and Risk of Cardiovascular Disease, All-
Cause Mortality, or Graft Failure in Kidney Transplant 
Recipients: An Ancillary Study of the FAVORIT Trial Cohort

Basma Merhi, MD1, Theresa Shireman, PhD2, Myra A. Carpenter, PhD3, John W. Kusek, 
PhD4, Paul Jacques, ScD5, Marc Pfeffer, MD, PhD6, Madhumathi Rao, MD7, Meredith C. 
Foster, ScD, MPH7, S. Joseph Kim, MD, PhD8, Todd E. Pesavento, MD9, Stephen R. Smith, 
MD10, Clifton E. Kew, MD11, Andrew A. House, MD12, Reginald Gohh, MD1, Daniel E. 
Weiner, MD7, Andrew S. Levey, MD7, Joachim H. Ix, MD13, and Andrew Bostom, MD, MS1

1Division of Hypertension and Kidney Diseases, Department of Medicine, Rhode Island Hospital

2Center for Gerontology and Healthcare Research, Brown University, Providence, RI

3Collaborative Studies Coordinating Center, University of North Carolina, Chapel Hill, NC

4National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, 
Bethesda, MD

5Nutritional Epidemiology Program, USDA Human Nutrition Research Center on Aging

6Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital

7Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, MA

8Division of Nephrology and the Kidney Transplant Program, Toronto General Hospital, Toronto, 
Ontario, Canada

9Division of Nephrology, Department of Medicine, Ohio State University, Columbus, OH

10Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, 
NC

11Division of Nephrology, Department of Medicine, University of Alabama-Birmingham, 
Birmingham, AL

Address correspondence to Andrew Bostom, MD, MS, Division of Hypertension and Kidney Diseases, Rhode Island Hospital, Middle 
House 301, 593 Eddy St, Providence, RI 02903. abostom@cox.net. 

Financial Disclosure: The authors declare that they have no other relevant financial interests.

Contributions: Research idea and study design: BM, TS, AB, MR, MCF, JHI; data acquisition: MAC, AB, PJ, MP, CEK, TEP, SJK, 
SRS, AAH, RG, ASL, DEW; data analysis/interpretation: BM, TS, AB, MAC, JWK, PJ, MP, MR, MCF, SJK, TEP, SRS, CEK, AAH, 
RG, DEW, ASL, JHI; statistical analysis: TS. Each author contributed important intellectual content during manuscript drafting or 
revision, and accepts accountability for the overall work by ensuring that questions pertaining to the accuracy or integrity of any 
portion of the work are appropriately investigated and resolved.

Peer Review: Evaluated by 2 external peer reviewers, a Statistics/Methods Editor, and an Acting Editor-in-Chief.

In line with AJKD’s procedures for potential conflicts of interest for editors, described in the Information for Authors & Journal 
policies, an Acting Editor-in-Chief (Associate Editor Peter P. Reese, MD, MSCE) handled the peer-review and decision-making 
processes.

HHS Public Access
Author manuscript
Am J Kidney Dis. Author manuscript; available in PMC 2017 November 28.

Published in final edited form as:
Am J Kidney Dis. 2017 September ; 70(3): 377–385. doi:10.1053/j.ajkd.2017.04.014.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/304661932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


12Division of Nephrology, Department of Medicine, London HealthSciences Center, London, 
Ontario, Canada

13Division of Nephrology-Hypertension, Department of Medicine, University of California, San 
Diego, CA

Abstract

Background—Mild hyperphosphatemia is a putative risk factor for cardiovascular disease 

[CVD], loss of kidney function, and mortality. Very limited data are available from sizable 

multicenter kidney transplant recipient (KTR) cohorts assessing the potential relationships 

between serum phosphorus levels and the development of CVD outcomes, transplant failure, or 

all-cause mortality.

Study Design—Cohort study.

Setting & Participants—The Folic Acid for Vascular Outcome Reduction in Transplantation 

(FAVORIT) Trial, a large, multicenter, multiethnic, controlled clinical trial that provided definitive 

evidence that high-dose vitamin B–based lowering of plasma homocysteine levels did not reduce 

CVD events, transplant failure, or total mortality in stable KTRs.

Predictor—Serum phosphorus levels were determined in 3,138 FAVORIT trial participants at 

randomization.

Results—During a median follow-up of 4.0 years, the cohort had 436 CVD events, 238 

transplant failures, and 348 deaths. Proportional hazards modeling revealed that each 1-mg/dL 

higher serum phosphorus level was not associated with a significant increase in CVD risk (HR, 

1.06; 95% CI, 0.92–1.22), but increased transplant failure (HR, 1.36; 95% CI, 1.15–1.62) and total 

mortality risk associations (HR, 1.21; 95% CI, 1.04–1.40) when adjusted for treatment allocation, 

traditional CVD risk factors, kidney measures, type of kidney transplant, transplant vintage, and 

use of calcineurin inhibitors, steroids, or lipid-lowering drugs. These associations were 

strengthened in models without kidney measures: CVD (HR, 1.14; 95% CI, 1.00–1.31), transplant 

failure (HR, 1.72; 95% CI, 1.46–2.01), and mortality (HR, 1.34; 95% CI, 1.15–1.54).

Limitations—We lacked data for concentrations of parathyroid hormone, fibroblast growth factor 

23, or vitamin D metabolites.

Conclusions—Serum phosphorus level is marginally associated with CVD and more strongly 

associated with transplant failure and total mortality in long-term KTRs. A randomized controlled 

clinical trial in KTRs that assesses the potential impact of phosphorus-lowering therapy on these 

hard outcomes may be warranted.

INDEX WORDS

Renal transplantation; phosphate toxicity; hyperphosphatemia; kidney transplant recipient (KTR); 
kidney failure; cardiovascular disease (CVD); graft failure; death; serum phosphorus; chronic 
kidney disease (CKD)

Deranged calcium-phosphorus metabolism frequently occurs in chronic kidney disease 

(CKD),1 progressively worsens as patients approach end-stage renal disease (ESRD),1,2 and 
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is not fully reversed after kidney transplantation.3–8 The hyperparathyroidism, elevated 

parathyroid hormone (PTH) concentrations, and increased fractional excretion of urinary 

phosphorus/decreased tubular reabsorption of phosphorus4 that result may not resolve even 

after successful transplantation with a well-functioning kidney transplant. Kidney transplant 

recipients (KTRs) whose glomerular filtration rate (GFR) subsequently declines to CKD 

stages 3b, 4, or 5 (GFRs of 30–44, 15–29, or <15 mL/min/1.73 m2, respectively) are also 

liable to experience the hyperphosphatemia, deficiencies of 25-hydroxyvitamin D3 and/or 

1,25-dihydroxyvitamin D3, and increased levels of the phosphatonin fibroblast growth factor 

23 (FGF-23) that are seen in CKD stages 3b to 5 in non-KTRs with native kidneys.3–8 

Because these markers of deranged calcium-phosphorus metabolism may be in the causal 

pathway linking “phosphorus toxicity” and its clinical consequences,9 one might expect 

them to be over-adjusted for in observational studies of KTRs. However, the relationship 

between serum phosphorus levels and outcomes can be seen even in such cohorts.3,8 

Regardless, baseline serum phosphorus levels seem to predict total and/or cardiovascular 

disease (CVD) mortality in CKD and KTR populations,3,6–8,10 as well as native kidney (or 

kidney transplant) failure.3,8,10,11

Given that only a single large multicenter study of KTRs with northern European ancestry 

has assessed these relationships,8 we addressed this paucity of data by using the novel Folic 

Acid for Vascular Outcome Reduction in Transplantation (FAVORIT) KTR trial cohort12,13 

to examine the potential associations between serum phosphorus level and the development 

of CVD outcomes, transplant failure, or all-cause mortality.

METHODS

Study Population

The completed FAVORIT Study was a large, multicenter, multiethnic, controlled clinical 

trial12–14 (ClinicalTrials.gov study number NCT00064753) that provided definitive evidence 

that high-dose, compared to low-dose, vitamin B—based lowering of levels of plasma 

homocysteine—a putatively thromboatherogenic amino acid byproduct of methionine 

metabolism12,13—failed to reduce hard centrally adjudicated CVD events (both fatal and 

nonfatal), transplant failure, or total mortality in long-term stable KTRs.13 Because the high-

dose vitamin intervention did not result in a significant reduction in event rates for any of 

these outcomes compared to the low-dose vitamin B treatment,13 groups are combined in all 

analyses for this report (for which a Rhode Island Hospital phosphorus data analysis 

ancillary study exemption was granted July 23, 2015).

KTRs were eligible for the parent study if they provided informed consent, were aged 35 to 

75 years, and had clinically stable kidney function and elevated total homocysteine levels. 

Stable kidney function was ascertained by medical chart review to establish that the patient’s 

current transplant had been functioning for at least 6 months posttransplantation and there 

was no documented clinical indication of kidney function deterioration. All enrolled 

participants had a Cockcroft-Gault estimated creatinine clearance (CLcr) ≥ 30 mL/min and 

elevated total homocysteine level (≥12.0 µmol/L for men or ≥11.0 µmol/L for women) based 

on central laboratory analysis of screening specimens. For women recruited after July 2005, 

CLcr eligibility criteria were reduced to ≥25 mL/min in acknowledgment of the lower CLcr 
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distribution routinely observed in women relative to that in men. Individuals with chronic 

illness limiting life expectancy to less than 2 years were excluded, as were those with CVD 

risk modified because of recent CVD-related events or procedures.12

Measurement of Serum Phosphorus

Nonfasting serum phosphorus concentrations were determined at baseline on an automated 

clinical chemistry analyzer (Olympus AU 400 Beckman Coulter, Inc; Olympus America 

Inc). With this methodology, inorganic phosphorus and ammonium molybdate reacted in the 

presence of sulfuric acid to form a phosphomolybdate complex that was measured at 

340/380 nm. Intra- and interassay coefficients of variation were equal to 2.1% and 3.4%, 

respectively.14

Outcomes Determined

The primary outcome was a composite of incident or first recurrent CVD during the study 

period, comprising: (1) CVD death, (2) myocardial infarction, (3) resuscitated sudden death, 

(4) stroke, (5) coronary artery revascularization, (6) lower-extremity revascularization or 

amputation above the ankle for severe arterial disease, (7) carotid endarterectomy or 

angioplasty, (8) abdominal aortic aneurysm repair, or (9) renal artery revascularization. The 

first 4 components of the primary outcome noted were centrally reviewed and adjudicated by 

the Clinical Endpoints Committee unaware of treatment assignment; the remaining 

outcomes were identified through medical record abstraction. The Clinical Endpoints 

Committee also reviewed records for unstable angina cases and urgent coronary 

revascularization procedures in search of myocardial infarctions that were not identified by 

the clinical site staff. Dialysis-dependent kidney transplant failure, all-cause mortality, and 

CVD mortality considered separately were secondary outcomes.13,14 We also examined a 

composite outcome of transplant failure and all-cause mortality to account for semi-

competing risks. Participants were not censored at the time of return to dialysis or at 

retransplantation. As such, time to first event of either transplant failure (ie, return to 

maintenance dialysis or preemptive retransplantation) or all-cause mortality essentially 

means the latter will only be deaths with transplant function because a death after returning 

to dialysis is preceded by transplant failure. Not censoring for death with transplant function 

is the preferred approach to avoid a scenario in which death with transplant function 

becomes a competing event for transplant failure.

Other Measurements

Data collected at study enrollment12–14 included the following: demographics (age, sex, and 

self-designated race/ethnicity), smoking status (current, former, or never), medical history 

(baseline CVD and diabetes mellitus), transplant characteristics (living donor kidney and 

time since transplantation), physical examination findings (body mass index and systolic and 

diastolic blood pressure), and laboratory variables (serum creatinine; total, high-density 

lipoprotein, and low-density lipoprotein cholesterol; triglycerides; and spot urinary15 

albumin and creatinine). Baseline blood pressure was the average of 2 measurements, and 

hypertension was defined as systolic blood pressure ≥ 140 mm Hg, diastolic blood pressure 

≥ 90 mm Hg, or antihypertensive medication use at study enrollment. Diabetes was defined 

as the use of insulin or oral hypoglycemic medications or patient history. Baseline CVD was 

Merhi et al. Page 4

Am J Kidney Dis. Author manuscript; available in PMC 2017 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



characterized as prior myocardial infarction, coronary artery revascularization, stroke, 

carotid arterial revascularization, abdominal or thoracic aortic aneurysm repair, and/or 

lower-extremity arterial revascularization.12–14 Race was defined as white, black, or other, 

with individuals who identified as other classified as white for GFR estimation by the CKD-

EPI (CKD Epidemiology Collaboration)16,17 creatinine equation. Body mass index was 

calculated as weight {in kilograms) divided by height (in meters) squared.

Statistical Methods

Jonckheere-Terpstra tests for ordered alternatives (for continuous variables) and a Wilcoxon-

type test for trend (for categorical variables) were used to compare baseline characteristics 

across quintiles of serum phosphorus concentrations, with the uppermost quintile divided in 

half (yielding deciles 9 and 10). Cox proportional hazards regression models were used to 

evaluate the association of baseline serum phosphorus concentrations with time to primary 

and secondary study outcomes. Competing events for the primary outcome were censored 

(ie, Cox models estimate cause-specific hazards). Initial models were adjusted a priori for 

serum phosphorus level, treatment assignment, systolic blood pressure (dichotomized as 

≥140 vs <140 mm Hg), age, sex, race, pre-existing CVD or diabetes, estimated GFR 

(eGFR), and natural log urinary albumin-creatinine ratio (UACR). Per additional data 

available from the FAVORIT trial, extended (“fully adjusted”) models were further adjusted 

a priori for smoking, body mass index, low-density lipoprotein cholesterol level, high-

density lipoprotein cholesterol level, natural log triglyceride level, kidney transplant vintage 

and type (deceased vs living donor), calcineurin inhibitor use, prednisone use, and lipid-

lowering drug use. Accordingly, we settled upon 3 main models: unadjusted, that is, serum 

phosphorus level only, as a continuous variable (model 1); almost fully adjusted, that is, 

serum phosphorus level plus all aforementioned variables, except the 2 kidney measures: 

eGFR and natural log of UACR (model 2); and the fully adjusted model that included these 

kidney measures (model 3). An additional model used the same full set of covariables, but 

compared the upper decile of serum phosphorus, relative to the first quintile, as the referent. 

In the semicompeting risk analyses (ie, for the transplant failure or mortality composite), a 

single failure event variable was constructed for time to the first of transplant failure or pre

—transplant failure death. Maintenance of proportional hazards assumptions was assessed 

for the primary and secondary outcome analyses by examination of log-log plotting of 

survival probability and the supremum test. Interaction terms were evaluated between serum 

phosphorus level and treatment randomization arm, as well as pre-existing CVD or diabetes, 

to detect for potential effect modification within these 2 higher-risk subgroups, in particular. 

Analyses were performed using SPSS (version 24.0; IBM) and STATA software (version 

14.2; StataCorp LP). Two-sided P < 0.05 was considered statistically significant for all 

analyses.

RESULTS

Study Population

There were 3,138 (76.3%) of the 4,110 FAVORIT participants who had complete data and 

were included in the present analyses (Fig 1). Mean age of the study population was 51.6 

± 9.4 (standard deviation) years, 62.9% were men, 76.0% were white, 19.3% had a history 
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of CVD, 39.0% had a history of diabetes mellitus, and median time since transplantation 

was 4.0 years (Table 1). Mean serum phosphorus level was 3.07 ± 0.68 mg/dL. Participants 

with increased serum phosphorus concentrations had significantly lower eGFRs and greater 

UACRs. They also had older transplant vintages, as well as higher prevalences of cadaveric 

transplants and pre-existing diabetes or CVD. In addition, they were significantly older and 

more likely to be men or current cigarette smokers and more likely to have higher systolic 

blood pressures, higher high-density lipoprotein cholesterol concentrations, and a greater 

prevalence of lipid-lowering drug use (Table 1).

Outcome Analyses

Proportional hazards assumptions were met for all outcome analyses.

CVD Outcomes—During a median follow-up of 4.0 years, there were 436 new CVD 

events (Table 2), including 135 CVD deaths (Table 3). In the unadjusted model and almost 

fully adjusted model (without adjustment for eGFR and UACR), each 1-mg/dL higher serum 

phosphorus concentration was associated with 25% greater (hazard ratio [HR], 1.25; 95% 

confidence interval [CI], 1.08–1.45) and 14% greater (HR, 1.14; 95% CI, 1.00–1.31) CVD 

risk, respectively. On additional adjustment for eGFR and UACR, this association was no 

longer statistically significant (HR, 1.06; 95% CI, 0.92–1.22; Table 3).

Kidney Transplant Failure—The most robust association observed was between serum 

phosphorus level and kidney transplant failure (n = 238 events; Table 2). Risk for transplant 

failure increased by 73% (HR, 1.73; 95% CI, 1.44–2.07) and 72% (HR, 1.72, 95% CI, 1.46–

2.01), respectively, per 1-mg/dL higher serum phosphorus level in the unadjusted model and 

the almost fully adjusted model (without adjustment for eGFR and UACR; Table 3). Risk 

was attenuated but remained statistically significant in the fully adjusted model (HR, 1.36; 

95% CI 1.15–1.62; Table 3). Comparison of the uppermost distribution of serum phosphorus 

(Table 1), that is, decile 10, ≥3.93 mg/dL, to the lowest quintile, ≤2.51 mg/dL, revealed 

215% increased risk (HR, 2.15; 95% CI, 1.33–3.46) for transplant failure in the fully 

adjusted model.

Mortality—There were 348 deaths in the study cohort during the follow-up period (Table 

2), predominantly from 3 causes: CVD deaths (n = 135), deaths due to infection (n = 72), 

and cancer deaths (n = 58), but also including deaths from other causes: pulmonary (n = 20), 

gastrointestinal (n = 16), unknown (n = 19), accidents (n = 12), renal (n = 8), procedural (n = 

2), valvular disease (n = 2), pulmonary embolus (n = 1), infectious endocarditis (n = 1), 

diabetes (n = 1), and suicide (n = 1). The unadjusted models and almost fully adjusted model 

(without adjustment for eGFR and UACR) revealed that each 1-mg/dL higher serum 

phosphorus concentration was associated with 43% greater (HR, 1.43; 95% CI, 1.22– 1.67) 

and 34% greater (HR, 1.34; 95% CI, 1.15–1.56) risk for all-cause mortality, respectively. 

Total mortality risk remained significant, although attenuated (HR, 1.21; 95% CI, 1.04–1.40) 

after further adjustment for eGFR and UACR (Table 3). When analyses were restricted to the 

135 CVD deaths, the unadjusted model and almost fully adjusted model indicated that each 

1-mg higher serum phosphorus level was associated, respectively, with 39% (HR, 1.39; 95% 

CI, 1.10–1.77) and 34% (HR, 1.34; 95% CI, 1.05–1.71) greater risk. This association was no 
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longer statistically significant on full adjustment including the kidney measures eGFR and 

UACR (HR, 1.15; 95% CI, 0.89–1.48; Table 3).

Competing Risk, Interaction, and Sensitivity Analyses

We examined the composite outcome of kidney transplant failure and all-cause mortality 

(with a functioning transplant) to assess semicompeting risk factors (534 total events; Table 

2). Risk for this composite outcome increased by 54% (HR, 1.54; 95% CI, 1.35–1.76) and 

47% (HR, 1.47; 95% CI, 1.31–1.65), respectively, per 1-mg/dL higher serum phosphorus 

level in the unadjusted model and almost fully adjusted model. On further adjustment for 

eGFR and UACR, risk was attenuated to 25% (HR, 1.25; 95% CI, 1.13–1.41) but remained 

significant and was intermediate between the risks associated with transplant failure (36%) 

and total mortality (21%), as separate individual outcomes, in the same fully adjusted 

models (Table 3).

As noted, the almost fully adjusted model (without adjustment for eGFR or UACR) 

strengthened associations between a 1-mg/dL higher serum phosphorus level and CVD (HR, 

1.14; 95% CI, 1.00–1.31), mortality (HR, 1.34; 95% CI, 1.16–1.55), transplant failure (HR, 

1.72; 95% CI, 1.46–2.01), or the composite outcome of transplant failure and all-cause 

mortality (HR, 1.47; 95% CI, 1.31–1.65). Comparable findings resulted when these models 

were restricted to those with eGFRs of 15 to 44 mL/min/1.73 m2 (CKD stages 3b–4; n = 

1,428): CVD (HR, 1.11; 95% CI, 0.94–1.32), transplant failure (HR, 1.57; 95% CI, 1.31–

1.89), mortality (HR, 1.21; 95% CI, 1.01–1.47), and transplant failure and all-cause 

mortality (HR, 1.35; 95% CI, 1.17–1.55).

Interaction analyses found no evidence for significant effect modification by serum 

phosphorus level with treatment assignment during the clinical trial (n = 1,569 participants 

each in the high- or low-dose vitamin B treatment groups), history of CVD, or history of 

diabetes, for any of the outcomes examined.

DISCUSSION

Overall, we found that each 1-mg/dL higher serum phosphorus level, determined at baseline, 

was at least marginally associated with CVD (14% greater risk) and more strongly 

associated with transplant failure (72% greater risk) or total mortality (34% greater risk) in 

our large multicenter long-term KTR cohort after adjustment for traditional CVD risk 

factors, transplant type (living vs cadaveric), and transplant vintage. Further adjustment for 

the kidney measures eGFR and UACR attenuated these associations, rendering the CVD 

association even smaller (6% greater risk) and nonsignificant, but associations persisted, 

significantly, for both transplant failure (36% increased risk) and total mortality (21% 

increased risk). Serum phosphorus concentrations ≥ 3.93 mg/dL, that is, within the 

uppermost decile, were associated with 215% increased risk for kidney transplant failure 

relative to concentrations ≤ 2.51 mg/dL (the lowest quintile distribution), even after full 

adjustment including kidney measures.

Our findings are concordant with most,6,7,11 but not all,18 previous small to moderately 

sized single-center studies, a sizable central European transplantation center study,3 and the 
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lone multicenter KTR cohort study.8 Regarding the latter, Pihlstrøm et al8 looked at the 

association of baseline phosphorus concentrations with major CVD events, kidney transplant 

loss, and all-cause mortality in 1,840 stable KTRs who were participants in the ALERT 

(Assessment of Lescol [fluvastatin] in Renal Transplantation) trial. During a mean follow-up 

of 6.7 years, death-censored transplant loss was recorded in 333 patients, 277 patients had a 

major CVD event, and 342 died, 168 from CVD. In unadjusted models, serum phosphorus 

level was associated with death from all causes (HR per 1-mg/dL greater serum phosphorus, 

1.23; 95% CI, 1.07–1.43) and transplant loss (HR, 2.61; 95% CI, 2.25–3.04). On 

multivariable modeling (including PTH > 65 pg/mL), the mortality finding lost statistical 

significance (HR, 1.07; 95% CI, 0.89–1.28), but the transplant loss relationship persisted 

(HR, 1.52; 95% CI, 1.27–1.82).8 In another study of stable KTRs, this time in a single center 

in Hungary, Wolf et al3 studied 984 patients for a median follow-up of 37 months. During 

this time, 87 patients died and 101 patients had kidney transplant loss. In fully adjusted 

models (adjusting for eGFR, age, sex, systolic blood pressure, body mass index, albumin 

level, calcium level, modified Charlson Comorbidity Index score, and transplant vintage, as 

well as serum phosphorus, PTH, and FGF-23 levels), the authors found that a 0.9-mg/dL (ie, 

a 1 —standard deviation) higher serum phosphorus level was associated with the composite 

end point of death or transplant failure (HR, 1.23; 95% CI, 1.08–1.40).3

Our data are supportive of the phosphate toxicity hypothesis,9,19 which could extend into the 

normative range of serum phosphorus levels, as Eddington et al20 have reported in 

nontransplant CKD. However, there may also be poor clinical outcomes associated with 

long-term upregulation of the hormonal mechanisms that preserve phosphorus homeostasis, 

even in the context of normal serum phosphorus concentrations. For instance, higher serum 

phosphorus concentrations (secondary to dietary intake and/or decreased GFR) appear to 

trigger synthesis of the bone-derived hormone FGF-23, which stimulates greater renal 

phosphorus excretion.1,3 This increase in FGF-23 level might then cause cardiac myocyte 

hypertrophy, clinically manifest as left ventricular hypertrophy,1,3 as well as a decrease in 

calcitriol (1,25-hydroxyvitamin D3) synthesis from 25-hydroxyvitaminvitamin D3.1,3 In 

patients with CKD stages 3 to 4, associations have been observed between elevated FGF-23 

levels and left ventricular hypertrophy, CVD events, mortality, or progression to ESRD.1 

Thus, when the body attempts to bring serum phosphorus levels into the normal range by 

effecting a longterm increase in FGF-23 concentrations, the result may be increased risk for 

left ventricular hypertrophy, CVD, and ESRD.13 Because higher phosphorus concentrations 

also trigger excess PTH secretion, clinical hyperparathyroidism may also occur in the long 

term.19 Ultimately, the relentless progression of CKD, along with additional nephron loss, 

proves too much for these compensatory hormonal mechanisms, leading most patients with 

advanced CKD to display hyperphosphatemia, elevated FGF-23 and PTH levels, and 

decreased 1,25-hydroxyvitamin D3 levels.1,9

The exact pathways accounting for the cytoxicity of extracellular phosphate require much 

further clarification. However, there is evidence that extracellular phosphorus combines with 

calcium and fetuin A to form insoluble calciprotein particles.9,21 These highly bioactive 

ligands can be cytotoxic and can also induce osteogenic transformation of vascular 

endothelium and renal tubular epithelium. Calciprotein particles have been detected in the 

circulation of animal models and also patients, including those with CKD, suggesting that 
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they may play a role in tissue injuries brought about by circulating phosphorus.9,21 There is 

now a validated assay of calcification propensity (the time required for transformation of 

primary calciprotein particles to secondary calciprotein particles), which has been used to 

accumulate further evidence that disruptions to phosphorus metabolism may lead to 

conditions favorable to ectopic (including vascular) calcification.21 Hyperphosphatemia, 

inadequate vitamin D status, elevations in PTH and FGF-23 levels, and greater calcification 

propensity have been associated with fatal CVD, transplant failure or rapid decline in eGFR, 

and total mortality among KTRs in epidemiologic analyses3,5,6–8,11,21 and may also have 

clinical relevance. The association between calcification propensity—which is intimately 

related to serum phosphorus concentration21,22 and associated with CVD outcomes in 

ESRD,22 as well as cardiorenal outcomes or all-cause mortality among KTRs21—

underscores the critical role of phosphate toxicity,9,19 which may supersede putative effects 

of deficient vitamin D status, or excess PTH, and FGF-23 concentrations.1,3,5,8 Although 

often neglected,1,3,5,8 a remarkably consistent series of elegant in vivo mouse knockout 

studies and a confirmatory rat 5/6 nephrectomy model report have elucidated that 

irrespective of high or low FGF-23 or PTH concentrations and vitamin D status, 

hyperphosphatemia promotes ectopic organ and vascular calcification, accompanied by 

premature death.19,23–31 Several of these animal model studies have also demonstrated 

correction of the hyperphosphatemia, uniquely, extended longevity.19,27,29,31 Most 

strikingly, in the Klotho(−/−)/NaPi2a(−/−) double knockout mouse model, notwithstanding 

persistent elevations in FGF-23 levels due to the deletion of Klotho (ie, the membrane-bound 

protein that facilitates effects of FGF-23), deleting the sodium-dependent phosphate 

transporter NaPi2a lowered serum phosphorus levels, suppressed ectopic calcification, and 

prolonged the reduced survival characteristic of the hyper-phosphatemic Klotho(−/−) single 

knockout model.19 High-phosphate diet-induced hyperphosphatemia in this Klotho(−/−)/

NaPi2a(−/−) double knockout model, conversely, was marked by the reappearance of ectopic 

calcification and accelerated aging.19

From an epidemiologic perspective, ignoring this central mechanistic argument, which rivets 

on phosphorus itself; absence of ancillary measures of dysregulated phosphorus metabolism 

such as FGF-23, PTH, vitamin D status; and calcification propensity, is a potential weakness 

of our study. Despite adjustment for eGFR and UACR, there may be residual confounding 

by other undetermined kidney measures of kidney function or damage. Furthermore, the data 

are purely observational, based on a single measurement of serum phosphorus, and cannot 

address directly whether lowering serum phosphorus concentrations would favorably affect 

any of the outcomes studied.

A limitation of our study included the fact that trial participants were excluded for lack of 

phosphate measurement. Also, compared to the general CKD population, our study may 

have some limitations in terms of generalizability because of restriction to KTRs. 

Specifically, the selection process for kidney transplantation tends to favor patients with 

ESRD with greater education, social support, and adherence to medical therapy. Usually 

KTRs have prolonged derangement of the parathyroid gland with effects on bone disease 

and potentially the vascular system. Finally, transplant recipients require 

immunosuppression.
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In conclusion, we found that serum phosphorus level was marginally associated with CVD 

and more strongly associated with transplant failure and total mortality in KTRs. Adjustment 

for the basic clinical kidney measures eGFR and UACR attenuated these associations. Our 

data suggest that KTRs merit a randomized controlled clinical trial that assesses the potential 

impact of phosphorus-lowering therapy on hard outcomes in this CKD population, such as 

CVD, all-cause mortality, and the development of kidney transplant failure—the last 

outcome, especially.
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Figure 1. 
Derivation of phosphorus analysis cohort. *Phosphorus cohort– eligible Folic Acid for 

Vascular Outcome Reduction in Transplantation (FAVORIT) participants were the 3,530 

who were not missing baseline creatinine, estimated glomerular filtration rate, cholesterol, 

triglyceride, or follow-up values and who had urine sent for determination of albumin-

creatinine ratio. Abbreviations: BMI, body mass index; CVD, cardiovascular disease; SBP, 

systolic blood pressure.
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