1,867 research outputs found

    Lattice study of infrared behaviour in SU(3) gauge theory with twelve massless flavours

    Get PDF
    We present details of a lattice study of infrared behaviour in SU(3) gauge theory with twelve massless fermions in the fundamental representation. Using the step-scaling method, we compute the coupling constant in this theory over a large range of scale. The renormalisation scheme in this work is defined by the ratio of Polyakov loops in the directions with different boundary conditions. We closely examine systematic effects, and find that they are dominated by errors arising from the continuum extrapolation. Our investigation suggests that SU(3) gauge theory with twelve flavours contains an infrared fixed point.Comment: 29 pages, 15 figures, 4 tables. Minor revision. Published versio

    Electromagnetic and spin polarisabilities in lattice QCD

    Get PDF
    We discuss the extraction of the electromagnetic and spin polarisabilities of nucleons from lattice QCD. We show that the external field method can be used to measure all the electromagnetic and spin polarisabilities including those of charged particles. We then turn to the extrapolations required to connect such calculations to experiment in the context of finite volume chiral perturbation theory. We derive results relevant for lattice simulations of QCD, partially-quenched QCD and quenched QCD. Our results for the polarisabilities show a strong dependence on the lattice volume and quark masses, typically differing from the infinite volume limit by ~10% for current lattice volumes and quark masses.Comment: Minor change

    Initial nucleon structure results with chiral quarks at the physical point

    Get PDF
    We report initial nucleon structure results computed on lattices with 2+1 dynamical M\"obius domain wall fermions at the physical point generated by the RBC and UKQCD collaborations. At this stage, we evaluate only connected quark contributions. In particular, we discuss the nucleon vector and axial-vector form factors, nucleon axial charge and the isovector quark momentum fraction. From currently available statistics, we estimate the stochastic accuracy of the determination of gAg_A and u−d_{u-d} to be around 10%, and we expect to reduce that to 5% within the next year. To reduce the computational cost of our calculations, we extensively use acceleration techniques such as low-eigenmode deflation and all-mode-averaging (AMA). We present a method for choosing optimal AMA parameters.Comment: 7 pages, 11 figures; talk presented at the 32nd International Symposium on Lattice Field Theory, 23-28 June, 2014, Columbia University, New York, US

    Hadron Structure on the Lattice

    Full text link
    A few chosen nucleon properties are described from a lattice QCD perspective: the nucleon sigma term and the scalar strangeness in the nucleon; the vector form factors in the nucleon, including the vector strangeness contribution, as well as parity breaking effects like the anapole and electric dipole moment; and finally the axial and tensor charges of the nucleon. The status of the lattice calculations is presented and their potential impact on phenomenology is discussed.Comment: 17 pages, 9 figures; proceedings of the Conclusive Symposium of the Collaborative Research Center 443 "Many-body structure of strongly interacting systems", Mainz, February 23-25, 201

    Rectangular Wilson Loops at Large N

    Full text link
    This work is about pure Yang-Mills theory in four Euclidean dimensions with gauge group SU(N). We study rectangular smeared Wilson loops on the lattice at large N and relatively close to the large-N transition point in their eigenvalue density. We show that the string tension can be extracted from these loops but their dependence on shape differs from the asymptotic prediction of effective string theory.Comment: 47 pages, 21 figures, 8 table
    • …
    corecore