490 research outputs found
On Graphical Modeling of Preference and Importance
In recent years, CP-nets have emerged as a useful tool for supporting
preference elicitation, reasoning, and representation. CP-nets capture and
support reasoning with qualitative conditional preference statements,
statements that are relatively natural for users to express. In this paper, we
extend the CP-nets formalism to handle another class of very natural
qualitative statements one often uses in expressing preferences in daily life -
statements of relative importance of attributes. The resulting formalism,
TCP-nets, maintains the spirit of CP-nets, in that it remains focused on using
only simple and natural preference statements, uses the ceteris paribus
semantics, and utilizes a graphical representation of this information to
reason about its consistency and to perform, possibly constrained, optimization
using it. The extra expressiveness it provides allows us to better model
tradeoffs users would like to make, more faithfully representing their
preferences
Maximum Entanglement in Squeezed Boson and Fermion States
A class of squeezed boson and fermion states is studied with particular
emphasis on the nature of entanglement. We first investigate the case of
bosons, considering two-mode squeezed states. Then we construct the fermion
version to show that such states are maximum entangled, for both bosons and
fermions. To achieve these results, we demonstrate some relations involving
squeezed boson states. The generalization to the case of fermions is made by
using Grassmann variables.Comment: 4 page
Bounds on Multipartite Entangled Orthogonal State Discrimination Using Local Operations and Classical Communication
We show that entanglement guarantees difficulty in the discrimination of
orthogonal multipartite states locally. The number of pure states that can be
discriminated by local operations and classical communication is bounded by the
total dimension over the average entanglement. A similar, general condition is
also shown for pure and mixed states. These results offer a rare operational
interpretation for three abstractly defined distance like measures of
multipartite entanglement.Comment: 4 pages, 1 figure. Title changed in accordance with jounral request.
Major changes to the paper. Intro rewritten to make motivation clear, and
proofs rewritten to be clearer. Picture added for clarit
Bell inequalities for random fields
The assumptions required for the derivation of Bell inequalities are not
usually satisfied for random fields in which there are any thermal or quantum
fluctuations, in contrast to the general satisfaction of the assumptions for
classical two point particle models. Classical random field models that
explicitly include the effects of quantum fluctuations on measurement are
possible for experiments that violate Bell inequalities.Comment: 18 pages; 1 figure; v4: Essentially the published version; extensive
improvements. v3: Better description of the relationship between classical
random fields and quantum fields; better description of random field models.
More extensive references. v2: Abstract and introduction clarifie
A comparison of resting state functional magnetic resonance imaging to invasive electrocortical stimulation for sensorimotor mapping in pediatric patients
Localizing neurologic function within the brain remains a significant challenge in clinical neurosurgery. Invasive mapping with direct electrocortical stimulation currently is the clinical gold standard but is impractical in young or cognitively delayed patients who are unable to reliably perform tasks. Resting state functional magnetic resonance imaging non-invasively identifies resting state networks without the need for task performance, hence, is well suited to pediatric patients. We compared sensorimotor network localization by resting state fMRI to cortical stimulation sensory and motor mapping in 16 pediatric patients aged 3.1 to 18.6 years. All had medically refractory epilepsy that required invasive electrographic monitoring and stimulation mapping. The resting state fMRI data were analyzed using a previously trained machine learning classifier that has previously been evaluated in adults. We report comparable functional localization by resting state fMRI compared to stimulation mapping. These results provide strong evidence for the utility of resting state functional imaging in the localization of sensorimotor cortex across a wide range of pediatric patients
Testing Quantum Dynamics using Signaling
We consider a physical system in which the description of states and
measurements follow the usual quantum mechanical rules. We also assume that the
dynamics is linear, but may not be fully quantum (i.e unitary). We show that in
such a physical system, certain complementary evolutions, namely cloning and
deleting operations that give a better fidelity than quantum mechanically
allowed ones, in one (inaccessible) region, lead to signaling to a far-apart
(accessible) region. To show such signaling, one requires certain two-party
quantum correlated states shared between the two regions. Subsequent
measurements are performed only in the accessible part to detect such
phenomenon.Comment: 4 pages, 2 figures, RevTeX4; v2: published versio
Testing the Dirac equation
The dynamical equations which are basic for the description of the dynamics
of quantum felds in arbitrary space--time geometries, can be derived from the
requirements of a unique deterministic evolution of the quantum fields, the
superposition principle, a finite propagation speed, and probability
conservation. We suggest and describe observations and experiments which are
able to test the unique deterministic evolution and analyze given experimental
data from which restrictions of anomalous terms violating this basic principle
can be concluded. One important point is, that such anomalous terms are
predicted from loop gravity as well as from string theories. Most accurate data
can be obtained from future astrophysical observations. Also, laboratory tests
like spectroscopy give constraints on the anomalous terms.Comment: 11 pages. to appear in: C. L\"ammerzahl, C.W.F. Everitt, and F.W.
Hehl (eds.): Gyros, Clocks, Interferometers...: Testing Relativistic Gravity
in Space, Lecture Notes in Physics 562, Springer 200
A critical analysis of Popper's experiment
An experiment which could decide against the Copenhagen interpretation of
quantum mechanics has been proposed by K. Popper and, subsequently, it has been
criticized by M.J. Collett and R. Loudon. Here we show that both the above
mentioned arguments are not correct because they are based on a misuse of basic
quantum rules.Comment: 12 pages, 3 figures, RevTex; to be published on PR
On the role of the corpus callosum in interhemispheric functional connectivity in humans
Resting state functional connectivity is defined in terms of temporal correlations between physiologic signals, most commonly studied using functional magnetic resonance imaging. Major features of functional connectivity correspond to structural (axonal) connectivity. However, this relation is not one-to-one. Interhemispheric functional connectivity in relation to the corpus callosum presents a case in point. Specifically, several reports have documented nearly intact interhemispheric functional connectivity in individuals in whom the corpus callosum (the major commissure between the hemispheres) never develops. To investigate this question, we assessed functional connectivity before and after surgical section of the corpus callosum in 22 patients with medically refractory epilepsy. Section of the corpus callosum markedly reduced interhemispheric functional connectivity. This effect was more profound in multimodal associative areas in the frontal and parietal lobe than primary regions of sensorimotor and visual function. Moreover, no evidence of recovery was observed in a limited sample in which multiyear, longitudinal follow-up was obtained. Comparison of partial vs. complete callosotomy revealed several effects implying the existence of polysynaptic functional connectivity between remote brain regions. Thus, our results demonstrate that callosal as well as extracallosal anatomical connections play a role in the maintenance of interhemispheric functional connectivity
Quantum Preferred Frame: Does It Really Exist?
The idea of the preferred frame as a remedy for difficulties of the
relativistic quantum mechanics in description of the non-local quantum
phenomena was undertaken by such physicists as J. S. Bell and D. Bohm. The
possibility of the existence of preferred frame was also seriously treated by
P. A. M. Dirac. In this paper, we propose an Einstein-Podolsky-Rosen-type
experiment for testing the possible existence of a quantum preferred frame. Our
analysis suggests that to verify whether a preferred frame of reference in the
quantum world exists it is enough to perform an EPR type experiment with pair
of observers staying in the same inertial frame and with use of the massive EPR
pair of spin one-half or spin one particles.Comment: 5 pp., 6 fig
- …