73 research outputs found

    Universal Spin-Flip Transition in Itinerant Antiferromagnets

    Full text link
    We report a universal spin flip (SF) transition as a function of temperature in spin-density-wave (SDW) systems. At low temperatures the antiferromagnetic (AFM) polarization is parallel to the applied field and above a critical temperature the AFM polarization {\it flips} perpendicular to the field. This transition occurs in {\it any} SDW system and may be considered as a qualitative probe of the itinerant character of AFM in a given material. Our SF transition resolves the longstanding puzzle of the SF transition observed in cromium and may be at the origin of the equally puzzling SDW-I to SDW-II transition in Bechgaard salts for which we make experimental predictions

    Fcγ Receptors in Solid Organ Transplantation.

    Get PDF
    In the current era, one of the major factors limiting graft survival is chronic antibody-mediated rejection (ABMR), whilst patient survival is impacted by the effects of immunosuppression on susceptibility to infection, malignancy and atherosclerosis. IgG antibodies play a role in all of these processes, and many of their cellular effects are mediated by Fc gamma receptors (FcγRs). These surface receptors are expressed by most immune cells, including B cells, natural killer cells, dendritic cells and macrophages. Genetic variation in FCGR genes is likely to affect susceptibility to ABMR and to modulate the physiological functions of IgG. In this review, we discuss the potential role played by FcγRs in determining outcomes in solid organ transplantation, and how genetic polymorphisms in these receptors may contribute to variations in transplant outcome.MRC is supported by the NIHR Cambridge BRC, the NIHR Blood and Transplant Research Unit (Cambridge) and by a Medical Research Council New Investigator Grant (MR/N024907/1).This is the final version of the article. It first appeared from Springer via https://doi.org/10.1007/s40472-016-0116-

    Characteristic development of the GABA-removal system in the mouse spinal cord

    Get PDF
    GABA is a predominant inhibitory neurotransmitter in the CNS. Released GABA is removed from the synaptic cleft by two GABA transporters (GATs), GAT-1 and GAT-3, and their dysfunction affects brain functions. The present study aimed to reveal the ontogeny of the GABA-removal system by examining the immunohistochemical localization of GAT-1 and GAT-3 in the embryonic and postnatal mouse cervical spinal cord. In the dorsal horn, GAT-1 was localized within the presynapses of inhibitory axons after embryonic day 15 (E15), a little prior to GABAergic synapse formation. The GAT-1-positive dots increased in density until postnatal day 21 (P21). By contrast, in the ventral horn, GAT-1-positive dots were sparse during development, although many transient GABAergic synapses were formed before birth. GAT-3 was first localized within the radial processes of radial glia in the ventral part on E12 and the dorsal part on E15. The initial localization of the GAT-3 was almost concomitant with the dispersal of GABAergic neurons. GAT-3 continued to be localized within the processes of astrocytes, and increased in expression until P21. These results suggested the following: (1) before synapse formation, GABA may be transported into the processes of radial glia or immature astrocytes by GAT-3. (2) At the transient GABAergic synapses in the ventral horn, GABA may not be reuptaken into the presynapses. (3) In the dorsal horn, GABA may start to be reuptaken by GAT-1 a little prior to synapse formation. (4) After synapse formation, GAT-3 may continue to remove GABA from immature and mature synaptic clefts into the processes of astrocytes. (5) Development of the GABA-removal system may be completed by P21

    L-isoform but not S-isoform of myelin associated glycoprotein promotes neurite outgrowth of mouse cerebellar neurons

    Get PDF
    ELSEVIER, Shimizu-Okabe, C; Matsuda, Y; Koito, H; Yoshida, S, NEUROSCIENCE LETTERS, 331(3), 203-205, 2001. authorMyelin associated glycoprotein (MAG) has growth promoting effect on mouse cerebellar neurons. In the present study, we examined which isoform of MAG has the effect. cDNA for L-MAG and S-MAG was stably transfected into BALB/c 3T3 cells, on which cerebellar neurons were cultured. The neurons were stained with antibody against microtubule-associated protein-2 (MAP-2). Neurites of the neurons cultured on cells expressing L-MAG extended significantly further than those cultured on cells expressing S-MAG or on control cells. Therefore, intracellular domain of MAG may have the potential to affect MAG-neurite interaction

    Comparison with measuring method of internal story drift on shaking table test of 7 story x-lam building

    No full text
    Time-history response analysis could be obtained good information of seismic performance of timber structure building. Modelling that used of time history analysis usually based on the static test results of fasteners, walls and frames. Shaking table test is one of the effective methods to verify the reliability of model on dynamic behaviour. To verify the model’s reliability, shaking table test should be carried out in consideration of the weight of test building, acceleration of each layer and internal story drift of displacement. To measure internal story drift is rather difficult and important factor, because the rigid tower for measuring displacement within the table as ordinary static loading test. CNR-IVALSA have been established SOFIE project on sustainable buildings used cross-laminated panels(X-LAM) and shaking table test on 7 story X-LAM building was carried out E-Defense in MIKI city on cooperation research with NIED, Shizuoka University and BRI in Japan. In this tested we could try two methods for measuring the internal story drift. One is displacement transducer setting in the building for measuring relative displacement between floor and ceiling, the other is optical displacement measuring system that optical transmitter is attached to the building and optical receiver is placed out of the table. In this report, internal story drift was compared with accumulated displacement measuring transducer in the building and difference displacement of table and optical transmitter. Optical displacement system is necessary to compensate the angle of roll, pitch and yaw on the table. Comparison with test results, long direction of building that mainly shear deformation shows good agreement of two measuring results, but short direction of building that include bending deformation shows optical displacement is larger than the accumulated displacement in the building
    corecore