5,459 research outputs found

    Precise QCD predictions on top quark pair production mediated by massive color octet vector boson at hadron colliders

    Full text link
    We present a theoretical framework for systematically calculating next-to-leading order (NLO) QCD effects to various experimental observables in models with massive COVB in a model independent way at hadron colliders. Specifically, we show the numerical results for the NLO QCD corrections to total cross sections, invariant mass distribution and AFB of top quark pairs production mediated by a massive COVB in both the fixed scale (top quark mass) scheme and the dynamical scale (top pair invariant mass) scheme. Our results show that the NLO QCD calculations in the dynamical scale scheme is more reasonable than the fixed scheme and the naive estimate of the NLO effects by simple rescaling of the LO results with the SM NLO K-factor is not appropriate.Comment: 6 pages, 5 figures, 2 tables; version published in EPJ

    Next-to-leading order QCD corrections to a heavy resonance production and decay into top quark pair at the LHC

    Full text link
    We present a complete next-to-leading order (NLO) QCD calculation to a heavy resonance production and decay into a top quark pair at the LHC, where the resonance could be either a Randall-Sundrum (RS) Kaluza-Klein (KK) graviton GG or an extra gauge boson Z′Z'. The complete NLO QCD corrections can enhance the total cross sections by about 80%−100%80\%- 100\% and 20%−40%20\%- 40\% for the GG and the Z′Z', respectively, depending on the resonance mass. We also explore in detail the NLO corrections to the polar angle distributions of the top quark, and our results show that the shapes of the NLO distributions can be different from the leading order (LO) ones for the KK graviton. Moreover, we study the NLO corrections to the spin correlations of the top quark pair production via the above process, and find that the corrections are small.Comment: Published version in PR

    The contributions of qqqqqˉqqqq\bar{q} components to the axial charges of proton and its resonances

    Full text link
    We calculate the axial charges of the proton and its resonances in the framework of the constituent quark model, which is extended to include the qqqqqˉqqqq\bar{q} components. If 20% admixtures of the qqqqqˉqqqq\bar{q} components in the proton are assumed, the theoretical value for the axial charge in our model is in good agreement with the empirical value, which can not be well reproduced in the traditional constituent quark model even though the SU(6)⨂O(3)SU(6) \bigotimes O(3) symmetry breaking or relativistic effect is taken into account. We also predict an unity axial charge for N∗(1440)N^{*}(1440) with 30% qqqqqˉqqqq\bar{q} components constrained by the strong and electromagnetic decays.Comment: 4 pages, 4 table

    Next-to-leading order QCD corrections to the top quark decay via the Flavor-Changing Neutral-Current operators with mixing effects

    Full text link
    In this paper detailed calculations of the complete O(αs)\mathcal{O}(\alpha_s) corrections to top quark decay widths Γ(t→q+V)\Gamma(t\to q+V) are presented (V=g,γ,ZV=g,\gamma,Z). Besides describing in detail the calculations in our previous paper (arXiv:0810.3889), we also include the mixing effects of the Flavor-Changing Neutral-Current (FCNC) operators for t→q+γt\to q+\gamma and t→q+Zt\to q+Z, which were not considered in our previous paper. The results for t→q+gt\to q+g are the same as in our previous paper. But the mixing effects can either be large or small, and increase or decrease the branching ratios for t→q+γt\to q+\gamma and t→q+Zt\to q+Z, depending on the values of the anomalous couplings (κtqg,γ,Z/Λ\kappa^{g,\gamma,Z}_{\mathrm{tq}}/\Lambda, ftqg,γ,Zf^{g,\gamma,Z}_{\mathrm{tq}} and htqg,γ,Zh^{g,\gamma,Z}_{\mathrm{tq}}).Comment: 21 pages, 12 figure

    One-loop Helicity Amplitudes for Top Quark Pair Production in Randall-Sundrum Model

    Full text link
    In this paper, we show how to calculate analytically the one-loop helicity amplitudes for the process qqˉrightarrowttˉq\bar{q} rightarrow t\bar{t} induced by KK gluon, using the spinor-helicity formalism. A minimal set of Feynman rules which are uniquely fixed by gauge invariance and the color representation of the KK gluon are derived and used in the calculation. Our results can be applied to a variety of models containing a massive color octet vector boson.Comment: 37 pages, 10 figures, journal versio

    Nonperturbative Effect in Threshold Resummation

    Full text link
    We show that the conventional threshold resummation calculation cannot describe well the low energy Drell-Yan (DY) data without including the non-perturbative correction terms which are deduced from analyzing the asymptotic behavior of the resummation formalism. It is demonstrated that the non-perturbative correction is generally small for the large invariant mass DY pairs produced at the Tevatron and the LHC.Comment: JHEP06(2009)03

    Infall, Fragmentation and Outflow in Sgr B2

    Full text link
    Observations of H2_{2}CO lines and continuum at 1.3 mm towards Sgr B2(N) and Sgr B2(M) cores were carried out with the SMA. We imaged H2_{2}CO line absorption against the continuum cores and the surrounding line emission clumps. The results show that the majority of the dense gas is falling into the major cores where massive stars have been formed. The filaments and clumps of the continuum and gas are detected outside of Sgr B2(N) and Sgr B2(M) cores. Both the spectra and moment analysis show the presence of outflows from Sgr B2(M) cores. The H2_{2}CO gas in the red-shifted outflow of Sgr B2(M) appears to be excited by a non-LTE process which might be related to the shocks in the outflow.Comment: 5 pages, 3 figures, Published in J. Physics Conference Serie

    Antiarrhythmic and proarrhythmic effects of subcutaneous nerve stimulation in ambulatory dogs

    Get PDF
    Background High output subcutaneous nerve stimulation (ScNS) remodels the stellate ganglia and suppresses cardiac arrhythmia. Objective To test the hypothesis that long duration low output ScNS causes cardiac nerve sprouting, increases plasma norepinephrine concentration and the durations of paroxysmal atrial tachycardia (PAT) in ambulatory dogs. Methods We prospectively randomized 22 dogs (11 males and 11 females) into 5 different output groups for 2 months of ScNS: 0 mA (sham) (N=6), 0.25 mA (N=4), 1.5 mA (N=4), 2.5 mA (N=4) and 3.5 mA (N=4). Results As compared with baseline, the changes of the durations of PAT episodes per 48 hours were significantly different among different groups (sham, -5.0±9.5 s; 0.25 mA 95.5±71.0 s; 1.5 mA, -99.3±39.6 s; 2.5 mA, -155.3±87.8 s and 3.5 mA, -76.3±44.8 s, p<0.001). The 3.5 mA group had greater reduction of sinus heart rate than the sham group (-29.8±15.0 bpm vs -14.5±3.0 bpm, p=0.038). Immunohistochemical studies showed that the 0.25 mA group had a significantly increased while 2.5 mA and 3.5 mA stimulation had a significantly reduced growth-associated protein 43 nerve densities in both atria and ventricles. The plasma Norepinephrine concentrations in 0.25 mA group was 5063.0±4366.0 pg/ml, which was significantly higher than other groups of dogs (739.3±946.3, p=0.009). There were no significant differences in the effects of simulation between males and females. Conclusions In ambulatory dogs, low output ScNS causes cardiac nerve sprouting, increases plasma norepinephrine concentration and the duration of PAT episodes while high output ScNS is antiarrhythmic

    Non-Markovian reduced dynamics and entanglement evolution of two coupled spins in a quantum spin environment

    Full text link
    The exact quantum dynamics of the reduced density matrix of two coupled spin qubits in a quantum Heisenberg XY spin star environment in the thermodynamic limit at arbitrarily finite temperatures is obtained using a novel operator technique. In this approach, the transformed Hamiltonian becomes effectively Jaynes-Cumming like and thus the analysis is also relevant to cavity quantum electrodynamics. This special operator technique is mathematically simple and physically clear, and allows us to treat systems and environments that could all be strongly coupled mutually and internally. To study their entanglement evolution, the concurrence of the reduced density matrix of the two coupled central spins is also obtained exactly. It is shown that the dynamics of the entanglement depends on the initial state of the system and the coupling strength between the two coupled central spins, the thermal temperature of the spin environment and the interaction between the constituents of the spin environment. We also investigate the effect of detuning which in our model can be controlled by the strength of a locally applied external magnetic field. It is found that the detuning has a significant effect on the entanglement generation between the two spin qubits.Comment: 9 pages (two-coulumn), 6 figures. To appear in Phys. Rev.

    Signatures of the light gluino in the top quark production

    Get PDF
    If a light gluino, with a mass of the order of GeV, exists in the minimal supersymmetric extension of the Standard Model, then it can contribute to the production rate of the top quark pairs at hadron colliders via the process gluino + gluino --> t + tbar. Because the top quark is heavy, the masses of the superpartners of the left-handed and right-handed top quarks can be very different such that a parity-violating observable can be induced at the tree level. We discuss the phenomenology of this parity violating asymmetry at the CERN Large Hadron Collider.Comment: 23 pages, 5 Postscript figure
    • …
    corecore