164 research outputs found

    SILAR-Based Application of Various Nanopillars on GaN-Based LED to Enhance Light-Extraction Efficiency

    Get PDF
    We reported the various nanopillars on GaN-based LED to enhance light-extraction efficiency prepared by successive ionic layer adsorption and reaction method (SILAR). Indium tin oxide (ITO) with thickness of 1 Όm as transparent contact layer was grown to improve the electrical characteristics of the LEDs, including series resistance and operating voltage. SILAR-deposition ZnO nanoparticles on SiO2 were used as etching nanomasks. Multiple nanopillars were simultaneously formed on overall surfaces of ITO p- and n-GaN by ICP etching. The proposed GaN-based LEDs with nanopillars increase light output power by 7%–20.3% (at 20 mA) over that of regular GaN-based LEDs. The difference in light output power can be attributed to differences in materials and shapes of nanopillars, resulting in a reduction in Fresnel reflection by the roughened surface of GaN-based LEDs

    SiO 2

    Get PDF
    We reported the SiO2 nanopillars on microscale roughened surface on GaN-based LED to enhance light-extraction efficiency. ZnO nanoparticles were deposited on SiO2 as an etching mask before ICP etching SiO2 by successive ionic layer adsorption and reaction method (SILAR), and the different heights of SiO2 nanopillars on microroughened ITO/GaN were obtained after etching. Compared to a regular (flat surface) GaN-based LED, the light output power for a LED with microroughening was increased by 33%. Furthermore, the proposed LEDs with SiO2 nanopillars on microroughened surface show the enhancement in light output power by 42.7%–49.1% at 20 mA. The increase in light output power is mostly attributed to reduction in Fresnel reflection by rough surface. The height of SiO2 nanopillars was increasing cause resulting in more rough on the microscale surface of GaN-based LEDs

    Physiological impact of load carriage exercise: Current understanding and future research directions

    Get PDF
    Load carriage (LC) refers to the use of personal protective equipment (PPE) and/or load-bearing apparatus that is mostly worn over the thoracic cavity. A commonplace task across various physically demanding occupational groups, the mass being carried during LC duties can approach the wearer's body mass. When compared to unloaded exercise, LC imposes additional physiological stress that negatively impacts the respiratory system by restricting chest wall movement and altering ventilatory mechanics as well as circulatory responses. Consequently, LC activities accelerate the development of fatigue in the respiratory muscles and reduce exercise performance in occupational tasks. Therefore, understanding the implications of LC and the effects specific factors have on physiological capacities during LC activity are important to the implementation of effective mitigation strategies to ameliorate the detrimental effects of thoracic LC. Accordingly, this review highlights the current physiological understanding of LC activities and outlines the knowledge and efficacy of current interventions and research that have attempted to improve LC performance, whilst also highlighting pertinent knowledge gaps that must be explored via future research activities

    Identification of a novel retroviral gene unique to human immunodeficiency virus type 2 and simian immunodeficiency virus SIVMAC

    Get PDF
    Human and simian immunodeficiency-associated retroviruses are extraordinarily complex, containing at least five genes, tat, art, sor, R, and 3' orf, in addition to the structural genes gag, pol, and env. Recently, nucleotide sequence analysis of human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency virus SIVMAC revealed the existence of still another open reading frame, termed X, which is highly conserved between these two viruses but absent from HIV-1. In this report, we demonstrate for the first time that the X open reading frame represents a functional retroviral gene in both HIV-2 and SIVMAC and that it encodes a virion-associated protein of 14 and 12 kilodaltons, respectively. We also describe the production of recombinant TrpE/X fusion proteins in Escherichia coli and show that sera from some HIV-2-infected individuals specifically recognize these proteins

    On two dimensional coupled bosons and fermions

    Full text link
    We study complex bosons and fermions coupled through a generalized Yukawa type coupling in the large-N_c limit following ideas of Rajeev [Int. Jour. Mod. Phys. A 9 (1994) 5583]. We study a linear approximation to this model. We show that in this approximation we do not have boson-antiboson and fermion-antifermion bound states occuring together. There is a possibility of having only fermion-antifermion bound states. We support this claim by finding distributional solutions with energies lower than the two mass treshold in the fermion sector. This also has implications from the point of view of scattering theory to this model. We discuss some aspects of the scattering above the two mass treshold of boson pairs and fermion pairs. We also briefly present a gauged version of the same model and write down the linearized equations of motion.Comment: 25 pages, no figure

    Large N limit of SO(N) gauge theory of fermions and bosons

    Get PDF
    In this paper we study the large N_c limit of SO(N_c) gauge theory coupled to a Majorana field and a real scalar field in 1+1 dimensions extending ideas of Rajeev. We show that the phase space of the resulting classical theory of bilinears, which are the mesonic operators of this theory, is OSp_1(H|H )/U(H_+|H_+), where H|H refers to the underlying complex graded space of combined one-particle states of fermions and bosons and H_+|H_+ corresponds to the positive frequency subspace. In the begining to simplify our presentation we discuss in detail the case with Majorana fermions only (the purely bosonic case is treated in our earlier work). In the Majorana fermion case the phase space is given by O_1(H)/U(H_+), where H refers to the complex one-particle states and H_+ to its positive frequency subspace. The meson spectrum in the linear approximation again obeys a variant of the 't Hooft equation. The linear approximation to the boson/fermion coupled case brings an additonal bound state equation for mesons, which consists of one fermion and one boson, again of the same form as the well-known 't Hooft equation.Comment: 27 pages, no figure

    Boson--fermion bound states in two dimensional QCD

    Get PDF
    We derive the boson--fermion bound state equation in a two dimensional gauge theory in the large--\nc limit. We analyze the properties of this equation and in particular, find that the mass trajectory is linear with respect to the bound state level for the higher mass states.Comment: 5pp, 2 figs (as a separate file), TIT/HEP-23

    Reliability and Validity of the HD-PRO-TriadTM, a Health-Related Quality of Life Measure Designed to Assess the Symptom Triad of Huntington\u27s Disease.

    Get PDF
    BACKGROUND: Huntington\u27s disease (HD), is a neurodegenerative disorder that is associated with cognitive, behavioral, and motor impairments that diminish health related quality of life (HRQOL). The HD-PRO-TRIADTM is a quality of life measure that assesses health concerns specific to individuals with HD. Preliminary psychometric characterization was limited to a convenience sample of HD participants who completed measures at home so clinician-ratings were unavailable. OBJECTIVES: The current study evaluates the reliability and validity of the HD-PRO-TRIADTM in a well-characterized sample of individuals with HD. METHODS: Four-hundred and eighty-two individuals with HD (n = 192 prodromal, n = 193 early, and n = 97 late) completed the HD-PRO-TRIADTM questionnaire. Clinician-rated assessments from the Unified Huntington Disease Rating Scales, the short Problem Behaviors Assessment, and three generic measures of HRQOL (WHODAS 2.0, RAND-12, and EQ-5D) were also examined. RESULTS: Internal reliability for all domains and the total HD-PRO-TRIADTM was excellent (all Cronbach\u27s α \u3e0.93). Convergent and discriminant validity were supported by significant associations between the HD-PRO-TRIADTM domains, and other patient reported outcome measures as well as clinician-rated measures. Known groups validity was supported as the HD-PRO-TRIADTM differentiated between stages of the disease. Floor and ceiling effects were generally within acceptable limits. There were small effect sizes for 12-month change over time and moderate effect sizes for 24-month change over time. CONCLUSIONS: Findings support excellent internal reliability, convergent and discriminant validity, known groups validity, and responsiveness to change over time. The current study supports the clinical efficacy of the HD-PRO-TRIADTM. Future research is needed to assess the test-retest reliability of this measure

    Assessing Psychological Well-Being: Self-Report Instruments for the NIH Toolbox

    Get PDF
    Objective— Psychological well-being (PWB) has a significant relationship with physical and mental health. As part of the NIH Toolbox for the Assessment of Neurological and Behavioral Function, we developed self-report item banks and short forms to assess PWB. Study Design and Setting— Expert feedback and literature review informed the selection of PWB concepts and the development of item pools for Positive Affect, Life Satisfaction, and Meaning and Purpose. Items were tested with a community-dwelling U.S. internet panel sample of adults aged 18 and above (N=552). Classical and item response theory (IRT) approaches were used to evaluate unidimensionality, fit of items to the overall measure, and calibrations of those items, including differential item function (DIF). Results— IRT-calibrated item banks were produced for Positive Affect (34 items), Life Satisfaction (16 items), and Meaning and Purpose (18 items). Their psychometric properties were supported based on results of factor analysis, fit statistics, and DIF evaluation. All banks measured the concepts precisely (reliability ≄0.90) for more than 98% of participants. Conclusion— These adult scales and item banks for PWB provide the flexibility, efficiency, and precision necessary to promote future epidemiological, observational, and intervention research on the relationship of PWB with physical and mental health

    Supergrassmannian and large N limit of quantum field theory with bosons and fermions

    Get PDF
    We study a large N_{c} limit of a two-dimensional Yang-Mills theory coupled to bosons and fermions in the fundamental representation. Extending an approach due to Rajeev we show that the limiting theory can be described as a classical Hamiltonian system whose phase space is an infinite-dimensional supergrassmannian. The linear approximation to the equations of motion and the constraint yields the 't Hooft equations for the mesonic spectrum. Two other approximation schemes to the exact equations are discussed.Comment: 24 pages, Latex; v.3 appendix added, typos corrected, to appear in JM
    • 

    corecore