43 research outputs found
The Glassy Wormlike Chain
We introduce a new model for the dynamics of a wormlike chain in an
environment that gives rise to a rough free energy landscape, which we baptise
the glassy wormlike chain. It is obtained from the common wormlike chain by an
exponential stretching of the relaxation spectrum of its long-wavelength
eigenmodes, controlled by a single stretching parameter. Predictions for
pertinent observables such as the dynamic structure factor and the
microrheological susceptibility exhibit the characteristics of soft glassy
rheology and compare favourably with experimental data for reconstituted
cytoskeletal networks and live cells. We speculate about the possible
microscopic origin of the stretching, implications for the nonlinear rheology,
and the potential physiological significance of our results.Comment: 12 pages, 8 figures. Minor correction
Fluidization and Resolidification of the Human Bladder Smooth Muscle Cell in Response to Transient Stretch
Background: Cells resident in certain hollow organs are subjected routinely to large transient stretches, including every adherent cell resident in lungs, heart, great vessels, gut, and bladder. We have shown recently that in response to a transient stretch the adherent eukaryotic cell promptly fluidizes and then gradually resolidifies, but mechanism is not yet understood. Principal Findings: In the isolated human bladder smooth muscle cell, here we applied a 10% transient stretch while measuring cell traction forces, elastic modulus, F-actin imaging and the F-actin/G-actin ratio. Immediately after a transient stretch, F-actin levels and cell stiffness were lower by about 50%, and traction forces were lower by about 70%, both indicative of prompt fluidization. Within 5min, F-actin levels recovered completely, cell stiffness recovered by about 90%, and traction forces recovered by about 60%, all indicative of resolidification. The extent of the fluidization response was uninfluenced by a variety of signaling inhibitors, and, surprisingly, was localized to the unstretch phase of the stretch-unstretch maneuver in a manner suggestive of cytoskeletal catch bonds. When we applied an “unstretch-restretch” (transient compression), rather than a “stretch-unstretch” (transient stretch), the cell did not fluidize and the actin network did not depolymerize. Conclusions: Taken together, these results implicate extremely rapid actin disassembly in the fluidization response, and slow actin reassembly in the resolidification response. In the bladder smooth muscle cell, the fluidization response to transient stretch occurs not through signaling pathways, but rather through release of increased tensile forces that drive acute disassociation of actin
Reinforcement versus Fluidization in Cytoskeletal Mechanoresponsiveness
Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase traction forces and reinforce, as reported by some, or can soften and fluidize, as reported more recently by our laboratory, but in any given circumstance it remains unknown which response might prevail or why. Using a novel nanotechnology, we show here that in loading conditions expected in most physiological circumstances the localized reinforcement response fails to scale up to the level of homogeneous cell stretch; fluidization trumps reinforcement. Whereas the reinforcement response is known to be mediated by upstream mechanosensing and downstream signaling, results presented here show the fluidization response to be altogether novel: it is a direct physical effect of mechanical force acting upon a structural lattice that is soft and fragile. Cytoskeletal softness and fragility, we argue, is consistent with early evolutionary adaptations of the eukaryotic cell to material properties of a soft inert microenvironment
Intermediate-affinity LFA-1 binds α-actinin-1 to control migration at the leading edge of the T cell
T lymphocytes use LFA-1 to migrate into lymph nodes and inflammatory sites. To investigate the mechanisms regulating this migration, we utilize mAbs selective for conformational epitopes as probes for active LFA-1. Expression of the KIM127 epitope, but not the 24 epitope, defines the extended conformation of LFA-1, which has intermediate affinity for ligand ICAM-1. A key finding is that KIM127-positive LFA-1 forms new adhesions at the T lymphocyte leading edge. This LFA-1 links to the cytoskeleton through α-actinin-1 and disruption at the level of integrin or actin results in loss of cell spreading and migratory speed due to a failure of attachment at the leading edge. The KIM127 pattern contrasts with high-affinity LFA-1 that expresses both 24 and KIM127 epitopes, is restricted to the mid-cell focal zone and controls ICAM-1 attachment. Identification of distinctive roles for intermediate- and high-affinity LFA-1 in T lymphocyte migration provides a biological function for two active conformations of this integrin for the first time
Helical twist controls the thickness of F-actin bundles
In the presence of condensing agents such as nonadsorbing polymer, multivalent counter ions, and specific bundling proteins, chiral biopolymers typically form bundles with a finite thickness, rather than phase-separating into a polymer-rich phase. Although short-range repulsive interactions or geometrical frustrations are thought to force the equilibrium bundle size to be limited, the precise mechanism is yet to be resolved. The importance of the tight control of biopolymer bundle size is illustrated by the ubiquitous cytoskeletal actin filament bundles that are crucial for the proper functioning of cells. Using an in vitro model system, we show that size control relies on a mismatch between the helical structure of individual actin filaments and the geometric packing constraints within bundles. Small rigid actin-binding proteins change the twist of filamentous actin (F-actin) in a concentration-dependent manner, resulting in small, well defined bundle thickness up to ≈20 filaments, comparable to those found in filopodia. Other F-actin cross-linking proteins can subsequently link these small, well organized bundles into larger structures of several hundred filaments, comparable to those found in, for example, Drosophila bristles. The energetic tradeoff between filament twisting and cross-linker binding within a bundle is suggested as a fundamental mechanism by which cells can precisely adjust bundle size and strength