28 research outputs found

    Diagnostic performance of PET/CT in the detection of liver metastases in well-differentiated NETs

    No full text
    Abstract Background The aim of this retrospective study was to compare the diagnostic accuracy of somatostatin receptor (SSR)-PET/CT to liver MRI as reference standard in the evaluation of hepatic involvement in neuroendocrine tumors (NET). Methods An institutional database was screened for “SSR” imaging studies between 2006 and 2021. 1000 NET Patients (grade 1/2) with 2383 SSR-PET/CT studies and matching liver MRI in an interval of +3 months were identified. Medical reports of SSR-PET/CT and MRI were retrospectively evaluated regarding hepatic involvement and either confirmed by both or observed in MRI but not in SSR-PET/CT (false-negative) or in SSR-PET but not in MRI (false-positive). Results Metastatic hepatic involvement was reported in 1650 (69.2%) of the total 2383 SSR-PET/CT imaging studies, whereas MRI detected hepatic involvement in 1685 (70.7%) cases. There were 51 (2.1%) false-negative and 16 (0.7%) false-positive cases. In case of discrepant reports, MRI and PET/CT were reviewed side by side for consensus reading. SSR-PET/CT demonstrated a sensitivity of 97.0% (95%CI: 96.0%, 97.7%), a specificity of 97.7% (95%CI: 96.3%, 98.7%), a PPV of 99.0% (95%CI: 98.4%, 99.4%) and NPV of 93.0% (95%CI: 91.0, 94.8%) in identifying hepatic involvement. The most frequent reason for false-negative results was the small size of lesions with the majority < 0.6 cm. Conclusion This study confirms the high diagnostic accuracy of SSR-PET/CT in the detection of hepatic involvement in NET patients based on a patient-based analysis of metastatic hepatic involvement with a high sensitivity and specificity using liver MRI imaging as reference standard. However, one should be aware of possible pitfalls when a single imaging method is used in evaluating neuroendocrine liver metastases in patients

    Diagnostic accuracy of SSR-PET/CT compared to histopathology in the identification of liver metastases from well-differentiated neuroendocrine tumors

    No full text
    Abstract Background Histopathology is the reference standard for diagnosing liver metastases of neuroendocrine tumors (NETs). Somatostatin receptor-positron emission tomography / computed tomography (SSR-PET/CT) has emerged as a promising non-invasive imaging modality for staging NETs. We aimed to assess the diagnostic accuracy of SSR-PET/CT in the identification of liver metastases in patients with proven NETs compared to histopathology. Methods Histopathologic reports of 139 resected or biopsied liver lesions of patients with known NET were correlated with matching SSR-PET/CTs and the positive/negative predictive value (PPV/NPV), sensitivity, specificity, and diagnostic accuracy of SSR-PET/CT were evaluated. PET/CT reading was performed by one expert reader blinded to histopathology and clinical data. Results 133 of 139 (95.7%) liver lesions showed malignant SSR-uptake in PET/CT while initial histopathology reported on ‘liver metastases of NET´ in 127 (91.4%) cases, giving a PPV of 91.0%. Re-biopsy of the initially histopathologically negative lesions (reference standard) nevertheless diagnosed ‘liver metastases of NET’ in 6 cases, improving the PPV of PET/CT to 95.5%. Reasons for initial false-negative histopathology were inadequate sampling in the sense of non-target biopsies. The 6 (4.3%) SSR-negative lesions were all G2 NETs with a Ki-67 between 2–15%. Conclusion SSR-PET/CT is a highly accurate imaging modality for the diagnosis of liver metastases in patients with proven NETs. However, we found that due to the well-known tumor heterogeneity of NETs, specifically in G2 NETs approximately 4–5% are SSR-negative and may require additional imaging with [18F]FDG PET/CT

    Validation of the SSTR-RADS 1.0 for the structured interpretation of SSTR-PET/CT and treatment planning in neuroendocrine tumor (NET) patients

    Get PDF
    Objectives: The recently proposed standardized reporting and data system for somatostatin receptor (SSTR)-targeted PET/CT SSTR-RADS 1.0 showed promising first results in the assessment of diagnosis and treatment planning with peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors (NET). This study aimed to determine the intra- and interreader agreement of SSTR-RADS 1.0. Methods: SSTR-PET/CT scans of 100 patients were independently evaluated by 4 readers with different levels of expertise according to the SSTR-RADS 1.0 criteria at 2 time points within 6&nbsp;weeks. For each scan, a maximum of five target lesions were freely chosen by each reader (not more than three lesions per organ) and stratified according to the SSTR-RADS 1.0 criteria. Overall scan score and binary decision on PRRT were assessed. Intra- and interreader agreement was determined using the intraclass correlation coefficient (ICC). Results: Interreader agreement using SSTR-RADS 1.0 for identical target lesions (ICC ≥ 0.91) and overall scan score (ICC ≥ 0.93) was excellent. The decision to state "functional imaging fulfills requirements for PRRT and qualifies patient as potential candidate for PRRT" also demonstrated excellent agreement among all readers (ICC ≥ 0.86). Intrareader agreement was excellent even among different experience levels when comparing target lesion-based scores (ICC ≥ 0.98), overall scan score (ICC ≥ 0.93), and decision for PRRT (ICC ≥ 0.88). Conclusion: SSTR-RADS 1.0 represents a highly reproducible and accurate system for stratifying SSTR-targeted PET/CT scans with high intra- and interreader agreement. The system is a promising approach to standardize the diagnosis and treatment planning in NET patients. Key points: • SSTR-RADS 1.0 offers high reproducibility and accuracy. • SSTR-RADS 1.0 is a promising method to standardize diagnosis and treatment planning for patients with NET
    corecore