1,588 research outputs found
Majority Decision-Making Works Best Under Conditions of Leadership Ambiguity and Shared Task Representations
The effectiveness of decision-making teams depends largely on their ability to integrate and make sense of information. Consequently, teams which more often use majority decision-making may make better quality decisions, but particularly so when they also have task representations which emphasize the elaboration of information relevant to the decision, in the absence of clear leadership. In the present study we propose that (a) majority decision-making will be more effective when task representations are shared, and that (b) this positive effect will be more pronounced when leadership ambiguity (i.e., team members’ perceptions of the absence of a clear leader) is high. These hypotheses were put to the test using a sample comprising 81 teams competing in a complex business simulation for seven weeks. As predicted, majority decision-making was more effective when task representations were shared, and this positive effect was more pronounced when there was leadership ambiguity. The findings extend and nuance earlier research on decision rules, the role of shared task representations, and leadership clarity
Evolution of a beam dynamics model for the transport lines in a proton therapy facility
Despite the fact that the first-order beam dynamics models allow an
approximated evaluation of the beam properties, their contribution is essential
during the conceptual design of an accelerator or beamline. However, during the
commissioning some of their limitations appear in the comparison against
measurements. The extension of the linear model to higher order effects is,
therefore, demanded. In this paper, the effects of particle-matter interaction
have been included in the model of the transport lines in the proton therapy
facility at the Paul Scherrer Institut (PSI) in Switzerland. To improve the
performance of the facility, a more precise model was required and has been
developed with the multi-particle open source beam dynamics code called OPAL
(Object oriented Particle Accelerator Library). In OPAL, the Monte Carlo
simulations of Coulomb scattering and energy loss are performed seamless with
the particle tracking. Beside the linear optics, the influence of the passive
elements (e.g. degrader, collimators, scattering foils and air gaps) on the
beam emittance and energy spread can be analysed in the new model. This allows
for a significantly improved precision in the prediction of beam transmission
and beam properties. The accuracy of the OPAL model has been confirmed by
numerous measurements.Comment: 17 pages, 19 figure
Acrylamide: Increased concentrations in homemade food and first evidence of its variable absorption from food, variable metabolism and placental and breast milk transfer in humans
We have developed a liquid chromatography/mass spectrometry (LC-MS/MS) assay to determine acrylamide in various body fluids. The assay also allows the reliable quantitation of acrylamide in food. In a total of 11 healthy male and female subjects, we were able to show that acrylamide from food given to humans is in fact absorbed from the gut. The half-lives determined in two male subjects were 2.2 and 7 h. Acrylamide was found in human breast milk and penetrated the human placenta (n = 3). The variability of acrylamide concentrations found in this investigation is most likely caused by variable intersubject bioavailability and metabolism. This may be an important indication that the assessment of the risk from acrylamide for the individual may be very difficult without knowing the concentrations of acrylamide in the body. This should be considered in the design of any risk assessment study or post hoc analysis of earlier studies. At this time, we suggest that pregnant women and breast-feeding mothers avoid acrylamide-containing food. Copyright (C) 2002 S. Karger AG, Basel
Interference effects in the photorecombination of argonlike Sc3+ ions: Storage-ring experiment and theory
Absolute total electron-ion recombination rate coefficients of argonlike
Sc3+(3s2 3p6) ions have been measured for relative energies between electrons
and ions ranging from 0 to 45 eV. This energy range comprises all dielectronic
recombination resonances attached to 3p -> 3d and 3p -> 4s excitations. A broad
resonance with an experimental width of 0.89 +- 0.07 eV due to the 3p5 3d2 2F
intermediate state is found at 12.31 +- 0.03 eV with a small experimental
evidence for an asymmetric line shape. From R-Matrix and perturbative
calculations we infer that the asymmetric line shape may not only be due to
quantum mechanical interference between direct and resonant recombination
channels as predicted by Gorczyca et al. [Phys. Rev. A 56, 4742 (1997)], but
may partly also be due to the interaction with an adjacent overlapping DR
resonance of the same symmetry. The overall agreement between theory and
experiment is poor. Differences between our experimental and our theoretical
resonance positions are as large as 1.4 eV. This illustrates the difficulty to
accurately describe the structure of an atomic system with an open 3d-shell
with state-of-the-art theoretical methods. Furthermore, we find that a
relativistic theoretical treatment of the system under study is mandatory since
the existence of experimentally observed strong 3p5 3d2 2D and 3p5 3d 4s 2D
resonances can only be explained when calculations beyond LS-coupling are
carried out.Comment: 11 pages, 7 figures, 3 tables, Phys. Rev. A (in print), see also:
http://www.strz.uni-giessen.de/~k
Technical challenges for FLASH proton therapy
There is growing interest in the radiotherapy community in the application of FLASH radiotherapy, wherein the dose is delivered to the entire treatment volume in less than a second. Early pre-clinical evidence suggests that these extremely high dose rates provide significant sparing of healthy tissue compared to conventional radiotherapy without reducing the damage to cancerous cells. This interest has been reflected in the proton therapy community, with early tests indicating that the FLASH effect is also present with high dose rate proton irradiation.
In order to deliver clinically relevant doses at FLASH dose rates significant technical hurdles must be overcome in the accelerator technology before FLASH proton therapy can be realised. Of these challenges, increasing the average current from the present clinical range of 1–10 nA to in excess of 100 nA is at least feasible with existing technology, while the necessity for rapid energy adjustment on the order of a few milliseconds is much more challenging, particularly for synchrotron-based systems. However, the greatest challenge is to implement full pencil beam scanning, where scanning speeds 2 orders of magnitude faster than the existing state-of-the-art will be necessary, along with similar improvements in the speed and accuracy of associated dosimetry. Hybrid systems utilising 3D-printed patient specific range modulators present the most likely route to clinical delivery. However, to correctly adapt and develop existing technology to meet the challenges of FLASH, more pre-clinical studies are needed to properly establish the beam parameters that are necessary to produce the FLASH effect
Enhanced dielectronic recombination of lithium-like Ti19+ ions in external ExB fields
Dielectronic recombination(DR) of lithium-like Ti19+(1s2 2s) ions via 2s->2p
core excitations has been measured at the Heidelberg heavy ion storage ring
TSR. We find that not only external electric fields (0 <= Ey <= 280 V/cm) but
also crossed magnetic fields (30 mT <= Bz <= 80 mT) influence the DR via high-n
(2p_j nl)-Rydberg resonances. This result confirms our previous finding for
isoelectronic Cl14+ ions [Bartsch T et al, PRL 82, 3779 (1999)] that
experimentally established the sensitivity of DR to ExB fields. In the present
investigation the larger 2p_{1/2}-2p_{3/2} fine structure splitting of Ti19+
allowed us to study separately the influence of external fields via the two
series of Rydberg DR resonances attached to the 2s -> 2p_{1/2} and 2s ->
2p_{3/2} excitations of the Li-like core, extracting initial slopes and
saturation fields of the enhancement. We find that for Ey > 80 V/cm the field
induced enhancement is about 1.8 times stronger for the 2p_{3/2} series than
for the 2p_{1/2} series.Comment: 10 pages, 3 figures, to be published in Journal of Physics B, see
also http://www.strz.uni-giessen.de/~k
Single-photon single ionization of W ions: experiment and theory
Experimental and theoretical results are reported for photoionization of
Ta-like (W) tungsten ions. Absolute cross sections were measured in the
energy range 16 to 245 eV employing the photon-ion merged-beam setup at the
Advanced Light Source in Berkeley. Detailed photon-energy scans at 100 meV
bandwidth were performed in the 16 to 108 eV range. In addition, the cross
section was scanned at 50 meV resolution in regions where fine resonance
structures could be observed. Theoretical results were obtained from a
Dirac-Coulomb R-matrix approach. Photoionization cross section calculations
were performed for singly ionized atomic tungsten ions in their , =1/2, ground level and the associated
excited metastable levels with =3/2, 5/2, 7/2 and 9/2. Since the ion beams
used in the experiments must be expected to contain long-lived excited states
also from excited configurations, additional cross-section calculations were
performed for the second-lowest term, 5d^5 \; ^6{\rm S}_{J}, =5/2, and for
the F term, 5d^3 6s^2 \; ^4{\rm F}_{J}, with = 3/2, 5/2, 7/2 and 9/2.
Given the complexity of the electronic structure of W the calculations
reproduce the main features of the experimental cross section quite well.Comment: 23 pages, 7 figures, 1 table: Accepted for publication in J. Phys. B:
At. Mol. & Opt. Phy
- …