1,364 research outputs found

    A multiscale mechanobiological model of bone remodelling predicts site-specific bone loss in the femur during osteoporosis and mechanical disuse

    Full text link
    We propose a multiscale mechanobiological model of bone remodelling to investigate the site-specific evolution of bone volume fraction across the midshaft of a femur. The model includes hormonal regulation and biochemical coupling of bone cell populations, the influence of the microstructure on bone turnover rate, and mechanical adaptation of the tissue. Both microscopic and tissue-scale stress/strain states of the tissue are calculated from macroscopic loads by a combination of beam theory and micromechanical homogenisation. This model is applied to simulate the spatio-temporal evolution of a human midshaft femur scan subjected to two deregulating circumstances: (i) osteoporosis and (ii) mechanical disuse. Both simulated deregulations led to endocortical bone loss, cortical wall thinning and expansion of the medullary cavity, in accordance with experimental findings. Our model suggests that these observations are attributable to a large extent to the influence of the microstructure on bone turnover rate. Mechanical adaptation is found to help preserve intracortical bone matrix near the periosteum. Moreover, it leads to non-uniform cortical wall thickness due to the asymmetry of macroscopic loads introduced by the bending moment. The effect of mechanical adaptation near the endosteum can be greatly affected by whether the mechanical stimulus includes stress concentration effects or not.Comment: 25 pages, 10 figure

    Crystallographic and Computational Characterization of Methyl Tetrel Bonding in S-Adenosylmethionine-Dependent Methyltransferases

    Get PDF
    Tetrel bonds represent a category of non-bonding interaction wherein an electronegative atom donates a lone pair of electrons into the sigma antibonding orbital of an atom in the carbon group of the periodic table. Prior computational studies have implicated tetrel bonding in the stabilization of a preliminary state that precedes the transition state in SN2 reactions, including methyl transfer. Notably, the angles between the tetrel bond donor and acceptor atoms coincide with the prerequisite geometry for the SN2 reaction. Prompted by these findings, we surveyed crystal structures of methyltransferases in the Protein Data Bank and discovered multiple instances of carbon tetrel bonding between the methyl group of the substrate S-adenosylmethionine (AdoMet) and electronegative atoms of small molecule inhibitors, ions, and solvent molecules. The majority of these interactions involve oxygen atoms as the Lewis base, with the exception of one structure in which a chlorine atom of an inhibitor functions as the electron donor. Quantum mechanical analyses of a representative subset of the methyltransferase structures from the survey revealed that the calculated interaction energies and spectral properties are consistent with the values for bona fide carbon tetrel bonds. The discovery of methyl tetrel bonding offers new insights into the mechanism underlying the SN2 reaction catalyzed by AdoMet-dependent methyltransferases. These findings highlight the potential of exploiting these interactions in developing new methyltransferase inhibitors

    Theoretical vibrational study of the FX⋅⋅⋅O(CH3)2 hydrogen‐bonded complex

    Get PDF
    This paper presents the first ab initio attempt to reconstruct the observed band profile of the stretching fundamental vFX (X=H,D) in the FX⋅⋅⋅O(CH3)2 hydrogen‐bonded system. The two‐dimensional potential energy surface V(rFH,RF⋅⋅⋅O) is evaluated by means of large basis set SCF calculations. The related force constants up to the fourth order are obtained via the analytical fit to a polynomial expansion. The vibrational problem is solved by means of a variational treatment which includes the effects of mechanical anharmonicity. The side bands of the stretching fundamental vFX are described in terms of the vFX ±nvFX⋅⋅⋅O combination bands in excellent agreement with experiment

    Polarization forces in water deduced from single molecule data

    Full text link
    Intermolecular polarization interactions in water are determined using a minimal atomic multipole model constructed with distributed polarizabilities. Hydrogen bonding and other properties of water-water interactions are reproduced to fine detail by only three multipoles ΌH\mu_H, ΌO\mu_O, and ΞO\theta_O and two polarizabilities αO\alpha_O and αH\alpha_H, which characterize a single water molecule and are deduced from single molecule data.Comment: 4 revtex pages, 3 embedded color PS figure

    Histomorphological analysis of the urogenital diaphragm in elderly women: a cadaver study

    Get PDF
    The objective of this study was to describe the histomorphological structure of the urogenital diaphragm in elderly women using a modern morphometric procedure. Biopsies were taken from the posterior margin of the urogenital diaphragm of 22 female cadavers (mean age, 87years) using a 60-mm punch. Hematoxylin/eosin and Goldner sections were analyzed with the Cavalieri estimator. The mean thickness of the urogenital diaphragm was 5.5mm. The main component was connective tissue. All biopsies contained smooth muscle. Eighteen biopsies contained more smooth muscle than striated muscle. In six of 22 biopsies, no striated muscle was found. The ratio of striated to smooth muscle to connective tissue was 1:2.3:13.3. Muscle fibers were dispersed in all parts of the urogenital diaphragm. The urogenital diaphragm of elderly women mainly consists of connective tissue. Smooth muscle was also found but to a lesser extent. The frequently used English term "perineal membrane” for the urogenital diaphragm is justified and well describes our findings in elderly wome

    Hydrogen bonding in infinite hydrogen fluoride and hydrogen chloride chains

    Full text link
    Hydrogen bonding in infinite HF and HCl bent (zigzag) chains is studied using the ab initio coupled-cluster singles and doubles (CCSD) correlation method. The correlation contribution to the binding energy is decomposed in terms of nonadditive many-body interactions between the monomers in the chains, the so-called energy increments. Van der Waals constants for the two-body dispersion interaction between distant monomers in the infinite chains are extracted from this decomposition. They allow a partitioning of the correlation contribution to the binding energy into short- and long-range terms. This finding affords a significant reduction in the computational effort of ab initio calculations for solids as only the short-range part requires a sophisticated treatment whereas the long-range part can be summed immediately to infinite distances.Comment: 9 pages, 4 figures, 3 tables, RevTeX4, corrected typo

    Crystal structures and proton dynamics in potassium and cesium hydrogen bistrifluoroacetate salts with strong symmetric hydrogen bonds

    Get PDF
    The crystal structures of potassium and cesium bistrifluoroacetates were determined at room temperature and at 20 K and 14 K, respectively, with the single crystal neutron diffraction technique. The crystals belong to the I2/a and A2/a monoclinic space groups, respectively, and there is no visible phase transition. For both crystals, the trifluoroacetate entities form dimers linked by very short hydrogen bonds lying across a centre of inversion. Any proton disorder or double minimum potential can be rejected. The inelastic neutron scattering spectral profiles in the OH stretching region between 500 and 1000 cm^{-1} previously published [Fillaux and Tomkinson, Chem. Phys. 158 (1991) 113] are reanalyzed. The best fitting potential has the major characteristics already reported for potassium hydrogen maleate [Fillaux et al. Chem. Phys. 244 (1999) 387]. It is composed of a narrow well containing the ground state and a shallow upper part corresponding to dissociation of the hydrogen bond.Comment: 31 pages, 7 figure

    Studying patterns of use of transport modes through data mining - Application to U.S. national household travel survey data set

    Get PDF
    Data collection activities related to travel require large amounts of financial and human resources to be conducted successfully. When available resources are scarce, the information hidden in these data sets needs to be exploited, both to increase their added value and to gain support among decision makers not to discontinue such efforts. This study assessed the use of a data mining technique, association analysis, to understand better the patterns of mode use from the 2009 U.S. National Household Travel Survey. Only variables related to self-reported levels of use of the different transportation means are considered, along with those useful to the socioeconomic characterization of the respondents. Association rules potentially showed a substitution effect between cars and public transportation, in economic terms but such an effect was not observed between public transportation and nonmotorized modes (e.g., bicycling and walking). This effect was a policy-relevant finding, because transit marketing should be targeted to car drivers rather than to bikers or walkers for real improvement in the environmental performance of any transportation system. Given the competitive advantage of private modes extensively discussed in the literature, modal diversion from car to transit is seldom observed in practice. However, after such a factor was controlled, the results suggest that modal diversion should mainly occur from cars to transit rather than from nonmotorized modes to transi

    Nr. 3: Die Behandlung bei Belastungsinkontinenz

    Full text link
    Sobald die Diagnose Belastungsinkontinenz gesichert ist, kann diese heute mit etablierten Behandlungsmethoden erfolgreich angegangen werden. Im Folgenden werden konservative und chirurgische Massnahmen nach heutigem Goldstandard erlÀutert
    • 

    corecore