516 research outputs found
Ab initio simulations of liquid systems: Concentration dependence of the electric conductivity of NaSn alloys
Liquid NaSn alloys in five different compositions (20, 40, 50, 57 and 80%
sodium) are studied using density functional calculations combined with
molecular dynamics(Car-Parrinello method). The frequency-dependent electric
conductivities for the systems are calculated by means of the Kubo-Greenwood
formula.
The extrapolated DC conductivities are in good agreement with the
experimental data and reproduce the strong variation with the concentration.
The maximum of conductivity is obtained, in agreement with experiment, near the
equimolar composition.
The strong variation of conductivity, ranging from almost semiconducting up
to metallic behaviour, can be understood by an analysis of the
densities-of-states.Comment: LaTex 6 pages and 2 figures, to appear in J.Phys. Cond. Ma
GPS water level measurements for Indonesia's Tsunami Early Warning System
On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements. <br><br> The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS) (Rudloff et al., 2009) combines GPS technology and ocean bottom pressure (OBP) measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information. <br><br> The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable
Stable isotope (δ18O and δ13C) sclerochronology of Callovian (Middle Jurassic) bivalves (Gryphaea (Bilobissa) dilobotes) and belemnites (Cylindroteuthis puzosiana) from the Peterborough Member of the Oxford Clay Formation (Cambridgeshire, England): Evidence of palaeoclimate, water depth and belemnite behaviour
Incremental δ18O and δ13C signals were obtained from three well-preserved specimens of Cylindroteuthis puzosiana and from three well-preserved specimens of Gryphaea (Bilobissa) dilobotes from the Peterborough Member of the Oxford Clay Formation (Cambridgeshire, England). Through-ontogeny (sclerochronological) δ18O data from G. (B.) dilobotes appear to faithfully record seasonal temperature variations in benthic Callovian waters of the study area, which range from c. 14 °C to c. 17 °C (arithmetic mean temperature c. 15 °C). Water depth is estimated to have been in the region of c. 50 m, based upon comparisons between these data, previously published non-incremental sea surface δ18O values, and a modern analogue situation. Productivity in Callovian waters was comparable with that in modern seas, based upon δ13C data from G. (B.)dilobotes, with 13C depletion occurring during warmer periods, possibly related to an interaction between plankton blooms and intra-annual variations in mixing across a thermocline. Incremental δ18O data from C.puzosiana provide temperature minima of c.11 °C for all specimens but with maxima varying between c.14 °C and c.16 °C for different individuals (arithmetic mean values c. 13 °C). Temperatures for late ontogeny, when the C. puzosiana individuals must have been living close to the study site and hence the analysed specimens of G. (B.) dilobotes, are closely comparable to those indicated by the latter. However, for significant portions of ontogeny C. puzosiana experienced temperatures between c. 2 °C and c. 3 °C cooler than the winter minimum as recorded by co-occurring G. (B.) dilobotes. Comparisons with modern seas suggest that descent to a depth of c. 1000 m would be necessary to explain such cool minimum temperatures. This can be discounted due to the lack of deep waters locally and due to estimates of the depth tolerance of belemnites. The most likely cause of cool δ18O signals from C. puzosiana is a cosmopolitan lifestyle including migration to more northerly latitudes. Mean δ13C values from C. puzosiana are comparable with those from G.(B.)dilobotes. However, the incrementally acquired data are highly variable and probably influenced by metabolic effects.The probable identification of migratory behaviour in C. puzosiana calls into question the reliability of some belemnite species as place-specific palaeoenvironmental archives and highlights the benefits of adopting a sclerochronological approach
Effects of feed particle size on energy values for broiler chickens at various ages
The objective of this study was to evaluate the effects of various geometric mean diameters (GMDs) of particles of corn, pelleted soybean meal and a corn-soy mixture in the proportion of 70% and 30%, respectively, on the nutritional value of the feeds. The study evaluated energy consumption, the contents of apparent metabolizable energy (AME) and AME corrected for nitrogen balance (AMEn) and the metabolizability coefficients for broiler chickens at various ages. A total of 540 Cobb 500 male broilers were housed in metabolic cages (experimental units). Trials were performed separately with each feed. A completely randomized design was used with four treatments, namely corn with 573, 636, 851, and 1012 μm GMDs; pelleted soybean meal with 538, 550, 665, and 741 μm GMDs; and the corn-soy mixture with 627, 658, 893, and 1040 μm GMDs. Birds were evaluated on days 1 - 10, 11 - 20, 21 - 30, and 31 - 40. Larger GMDs resulted in lower energy consumption. From 1 to 10 days, birds consumed less metabolizable energy than older birds. Birds fed corn from days 1 to 10 had higher metabolizable energy (P <0.05) with increasing GMD up to 1042 μm. However, the results varied, depending on the feed and its combinations. The use of coarse particles could reduce the costs of grinding, and would have few effects on the metabolizable energy of broiler chickens
Velocity Dependence Of One- And Two-electron Processes In Intermediate-velocity Ar16++He Collisions
We report investigations of one- and two-electron processes in the collisions of 0.9-keV/u to 60-keV/u (vp=0.19-1.55 a.u.) Ar16+ ions with He targets. The cross sections for these processes were measured by observing the final charges of the Ar ions and the recoiling target ions in coincidence. The average Q values for the capture channels were determined by measuring the longitudinal momenta of the recoiling target ions. Single capture (SC) is the dominant process and is relatively independent of the projectile energy. The two-electron transfer-ionization (TI) process is the next largest and slowly increases with projectile energy. The Q values for both SC and TI decrease with increasing projectile energy. Our data thereby suggest that electrons are captured into less tightly bound states as the collision velocity is increased. Both double capture and single ionization are much smaller and fairly independent of the projectile energy. The energy independence of SI is somewhat surprising as our energy range spans the region of the target electron velocity where ionization would be expected to increase. Our analysis suggests that the ionization process is being suppressed by SC and TI processes. © 1993 The American Physical Society
Dynamics of Excited Electrons in Copper: Role of Auger Electrons
Within a theoretical model based on the Boltzmann equation, we analyze in
detail the structure of the unusual peak recently observed in the relaxation
time in Cu. In particular, we discuss the role of Auger electrons in the
electron dynamics and its dependence on the d-hole lifetime, the optical
transition matrix elements and the laser pulse duration. We find that the Auger
contribution to the distribution is very sensitive to both the d-hole lifetime
tau_h and the laser pulse duration tau_l and can be expressed as a monotonic
function of tau_l/tau_h. We have found that for a given tau_h, the Auger
contribution is significantly smaller for a short pulse duration than for a
longer one. We show that the relaxation time at the peak depends linearly on
the d-hole lifetime, but interestingly not on the amount of Auger electrons
generated. We provide a simple expression for the relaxation time of excited
electrons which shows that its shape can be understood by a phase space
argument and its amplitude is governed by the d-hole lifetime. We also find
that the height of the peak depends on both the ratio of the optical transition
matrix elements R=|M_{d \to sp}|^2/|M_{sp \to sp}|^2 and the laser pulse
duration. Assuming a reasonable value for the ratio, namely R = 2, and a d-hole
lifetime of tau_h=35 fs, we obtain for the calculated height of the peak Delta
tau_{th}=14 fs, in fair agreement with Delta tau_{exp} \approx 17 fs measured
for polycrystalline Cu.Comment: 6 pages, 6 figure
Ionic structure and photoabsorption in medium sized sodium clusters
We present ground-state configurations and photoabsorption spectra of Na-7+,
Na-27+ and Na-41+. Both the ionic structure and the photoabsorption spectra of
medium-size sodium clusters beyond Na-20 have been calculated self-consistently
with a nonspherical treatment of the valence electrons in density functional
theory. We use a local pseudopotential that has been adjusted to experimental
bulk properties and the atomic 3s level of sodium. Our studies have shown that
both the ionic structure of the ground state and the positions of the plasmon
resonances depend sensitively on the pseudopotential used in the calculation,
which stresses the importance of its consistent use in both steps.Comment: 4 pages, 3 figures. Accepted for publication in PRB, tentatively July
15th, 1998 some typos corrected, brought to nicer forma
Composition Dependence of the Structure and Electronic Properties of Liquid Ga-Se Alloys Studied by Ab Initio Molecular Dynamics Simulation
Ab initio molecular dynamics simulation is used to study the structure and
electronic properties of the liquid Ga-Se system at the three compositions
GaSe, GaSe and GaSe, and of the GaSe and GaSe crystals. The
calculated equilibrium structure of GaSe crystal agrees well with available
experimental data. The neutron-weighted liquid structure factors calculated
from the simulations are in reasonable agreement with recent neutron
diffraction measurements. Simulation results for the partial radial
distribution functions show that the liquid structure is closely related to
that of the crystals. A close similarity between solid and liquid is also found
for the electronic density of states and charge density. The calculated
electronic conductivity decreases strongly with increasing Se content, in
accord with experimental measurements.Comment: REVTeX, 8 pages and 12 uuencoded PostScript figures, submitted to
Phys. Rev. B. corresponding author: [email protected]
Response theory for time-resolved second-harmonic generation and two-photon photoemission
A unified response theory for the time-resolved nonlinear light generation
and two-photon photoemission (2PPE) from metal surfaces is presented. The
theory allows to describe the dependence of the nonlinear optical response and
the photoelectron yield, respectively, on the time dependence of the exciting
light field. Quantum-mechanical interference effects affect the results
significantly. Contributions to 2PPE due to the optical nonlinearity of the
surface region are derived and shown to be relevant close to a plasmon
resonance. The interplay between pulse shape, relaxation times of excited
electrons, and band structure is analyzed directly in the time domain. While
our theory works for arbitrary pulse shapes, we mainly focus on the case of two
pulses of the same mean frequency. Difficulties in extracting relaxation rates
from pump-probe experiments are discussed, for example due to the effect of
detuning of intermediate states on the interference. The theory also allows to
determine the range of validity of the optical Bloch equations and of
semiclassical rate equations, respectively. Finally, we discuss how collective
plasma excitations affect the nonlinear optical response and 2PPE.Comment: 27 pages, including 11 figures, version as publishe
- …