328 research outputs found

    Groundwater recharge distribution due to snow cover in shortage conditions (2019–22) on the Gran Sasso carbonate aquifer (Central Italy)

    Get PDF
    Aquifer recharge by the snowpack is relevant to be assessed to evaluate groundwater availability in mountainous karst regions. The recharge due to snowpack in the Gran Sasso aquifer has previously been estimated through an empirical approach using elevation gradients. To validate and quantify the coverage and persistence of the snowpack over time through an objective method, satellite images have been analysed. The Campo Imperatore plain, the endorheic basin acting as a preferential recharge area of the aquifer, plays an important role, both for the snow cover and also for the infiltration and recharge of springs. The identification of recharge areas has been validated by the stable isotope approach with the assessment of computed isotope recharge elevation based on the values and oscillations of the delta O-18 isotope recorded at the springs. The main findings confirm the high infiltration rate of Campo Imperatore plain and its direct influence on snow contribution to aquifer recharge. The extension of snow coverage out of this plain has a minor influence to recharge, highlighting that the main drivers for infiltration rate are fractured networks and karstic forms more than snow coverage on carbonate outcrops

    Scanning Electron Microscopy of the Small Intestine Mucosa in Children with Celiac Disease After Long-Term Dietary Treatment

    Get PDF
    Jejunal mucosal specimens from twenty children with celiac disease were studied by light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) after one year of dietary treatment. An ultrastructural morphometric study was performed in five patients who had an intestinal permeability (IP) test. Seventeen patients were tested for serum antigliadin antibodies (AGA). In ten children, in whom LM showed partial villous atrophy, SEM and TEM examination confirmed the lesion. In the second group (10 children) with normal morphology at routine LM, SEM showed lesions of variable degree in 70% of cases. The morphological ultrastructural investigation showed good correlation with the immunological and functional data (IP test): ultrastructural damage of the jejunal mucosa after one year of a gluten-free diet was found in patients with positive serum AGA and an abnormal IP test. Furthermore, the morphometric study of the ultrastructural alterations allowed a quantitative, closer correlation between morphological and functional data. Our results suggest: 1) SEM and TEM investigations offer additional and more complete information on celiac patients, over LM alone. 2) The morphometric evaluation of the ultrastructural alterations highlights quantitative and reproducible correlations between morphological and clinical data, not strengthened by the subjective, qualitative study

    Expression of taste receptors in Solitary Chemosensory Cells of rodent airways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs.</p> <p>Methods</p> <p>We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP).</p> <p>Results</p> <p>Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways.</p> <p>Conclusions</p> <p>Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens.</p

    MP2RAGE provides new clinically-compatible correlates of mild cognitive deficits in relapsing-remitting multiple sclerosis.

    Get PDF
    Despite that cognitive impairment is a known early feature present in multiple sclerosis (MS) patients, the biological substrate of cognitive deficits in MS remains elusive. In this study, we assessed whether T1 relaxometry, as obtained in clinically acceptable scan times by the recent Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) sequence, may help identifying the structural correlate of cognitive deficits in relapsing-remitting MS patients (RRMS). Twenty-nine healthy controls (HC) and forty-nine RRMS patients underwent high-resolution 3T magnetic resonance imaging to obtain optimal cortical lesion (CL) and white matter lesion (WML) count/volume and T1 relaxation times. T1 z scores were then obtained between T1 relaxation times in lesion and the corresponding HC tissue. Patient cognitive performance was tested using the Brief Repeatable Battery of Neuro-psychological Tests. Multivariate analysis was applied to assess the contribution of MRI variables (T1 z scores, lesion count/volume) to cognition in patients and Bonferroni correction was applied for multiple comparison. T1 z scores were higher in WML (p &lt; 0.001) and CL-I (p &lt; 0.01) than in the corresponding normal-appearing tissue in patients, indicating relative microstructural loss. (1) T1 z scores in CL-I (p = 0.01) and the number of CL-II (p = 0.04) were predictors of long-term memory; (2) T1 z scores in CL-I (β = 0.3; p = 0.03) were independent determinants of long-term memory storage, and (3) lesion volume did not significantly influenced cognitive performances in patients. Our study supports evidence that T1 relaxometry from MP2RAGE provides information about microstructural properties in CL and WML and improves correlation with cognition in RRMS patients, compared to conventional measures of disease burden

    In Vitro Study of a Novel Vibrio alginolyticus-Based Collagenase for Future Medical Application

    Get PDF
    Mesenchymal stem cells extracted from adipose tissue are particularly promising given the ease of harvest by standard liposuction and reduced donor site morbidity. This study proposes a novel enzymatic method for isolating stem cells using Vibrio alginolyticus collagenase, obtaining a high-quality product in a reduced time. Initially, the enzyme concentration and incubation time were studied by comparing cellular yield, proliferation, and clonogenic capacities. The optimized protocol was phenotypically characterized, and its ability to differentiate in the mesodermal lineages was evaluated. Subsequently, that protocol was compared with two Clostridium histolyticum-based collagenases, and other tests for cellular integrity were performed to evaluate the enzyme’s effect on expanded cells. The best results showed that using a concentration of 3.6 mg/mL Vibrio alginolyticus collagenase allows extracting stem cells from adipose tissue after 20 min of enzymatic reaction like those obtained with Clostridium histolyticum-based collagenases after 45 min. Moreover, the extracted cells with Vibrio alginolyticus collagenase presented the phenotypic characteristics of stem cells that remain after culture conditions. Finally, it was seen that Vibrio alginolyticus collagenase does not reduce the vitality of expanded cells as Clostridium histolyticum-based collagenase does. These findings suggest that Vibrio alginolyticus collagenase has great potential in regenerative medicine, given its degradation selectivity by protecting vital structures for tissue restructuration

    A comprehensive review of healthy effects of vegetarian diets

    Get PDF
    Aims: A comprehensive review comparing the effect of vegetarian (V) and non-vegetarian (NV) diets on the major cardiometabolic diseases’ outcomes was performed. Data synthesis: We performed literature research (up to December 31, 2022) of the evidence separately for vascular disease (VD), obesity (OB), dyslipidemia (Dysl), hypertension (HPT), type 2 diabetes (T2D), metabolic syndrome (MetS), analyzing only cohort studies and randomized controlled studies (RCTs) and comparing the effect of V and NV diets. Cohort studies showed advantages of V diets compared to NV diets on incidence and/or mortality risk for ischemic heart disease, overweight and OB risk. Most cohort studies showed V had lower risk of HPT and lower blood pressure (BP) than NV and V diets had positive effects on T2D risk or plasma parameters. The few cohort studies on the risk of MetS reported mixed results. In RCTs, V diets, mainly low-fat-vegan ones, led to greater weight loss and improved glycemic control than NV diets and in the only one RCT a partial regression of coronary atherosclerosis. In most RCTs, V diets significantly reduced LDL-C levels (but also decreased HDL-C levels) and BP. Conclusions: In this comprehensive review of the association between V diets and cardiometabolic outcomes, we found that following this type of diet may help to prevent most of these diseases. However, the non-uniformity of the studies, due to ethnic, cultural, and methodological differences, does not allow for generalizing the present results and drawing definitive conclusions. Further, well-designed studies are warranted to confirm the consistency of our conclusions

    Highly Pluripotent Adipose-Derived Stem Cell–Enriched Nanofat: A Novel Translational System in Stem Cell Therapy

    Get PDF
    Fat graft is widely used in plastic and reconstructive surgery. The size of the injectable product, the unpredictable fat resorption rates, and subsequent adverse effects make it tricky to inject untreated fat into the dermal layer. Mechanical emulsification of fat tissue, which Tonnard introduced, solves these problems, and the product obtained was called nanofat. Nanofat is widely used in clinical and aesthetic settings to treat facial compartments, hypertrophic and atrophic scars, wrinkle attenuation, skin rejuvenation, and alopecia. Several studies demonstrate that the tissue regeneration effects of nanofat are attributable to its rich content of adipose-derived stem cells. This study aimed to characterize Hy-Tissue Nanofat product by investigating morphology, cellular yield, adipose-derived stem cell (ASC) proliferation rate and clonogenic capability, immunophenotyping, and differential potential. The percentage of SEEA3 and CD105 expression was also analyzed to establish the presence of multilineage-differentiating stress-enduring (MUSE) cell. Our results showed that the Hy-Tissue Nanofat kit could isolate 3.74 × 104 ± 1.31 × 104 proliferative nucleated cells for milliliter of the treated fat. Nanofat-derived ASC can grow in colonies and show high differentiation capacity into adipocytes, osteocytes, and chondrocytes. Moreover, immunophenotyping analysis revealed the expression of MUSE cell antigen, making this nanofat enriched of pluripotent stem cell, increasing its potential in regenerative medicine. The unique characteristics of MUSE cells give a simple, feasible strategy for treating a variety of diseases

    Distinct dual C-Cl isotope fractionation patterns during anaerobic biodegradation of 1,2-dichloroethane: potential to characterize microbial degradation in the field

    Get PDF
    This study investigates, for the first time, dual C-Cl isotope fractionation during anaerobic biodegradation of 1,2-dichloroethane (1,2-DCA) via dihaloelimination by Dehalococcoides and Dehalogenimonas-containing enrichment cultures. Isotopic fractionation of 1,2-DCA (εbulkC and εbulkCl) for Dehalococcoides (−33.0 ± 0.4¿ and −5.1 ± 0.1¿) and Dehalogenimonas-containing microcosms (−23 ± 2¿ and −12.0 ± 0.8¿) resulted in distinctly different dual element C-Cl isotope correlations (Λ = Δδ13C/Δδ37Cl ≈ εbulkC/εbulkCl), 6.8 ± 0.2 and 1.89 ± 0.02, respectively. Determined isotope effects and detected products suggest that the difference on the obtained Λ values for biodihaloelimination could be associated with a different mode of concerted bond cleavage rather than two different reaction pathways (i.e., stepwise vs concerted). Λ values of 1,2-DCA were, for the first time, determined in two field sites under reducing conditions (2.1 ± 0.1 and 2.2 ± 2.9). They were similar to the one obtained for the Dehalogenimonas-containing microcosms (1.89 ± 0.02) and very different from those reported for aerobic degradation pathways in a previous laboratory study (7.6 ± 0.1 and 0.78 ± 0.03). Thus, this study illustrates the potential of a dual isotope analysis to differentiate between aerobic and anaerobic biodegradation pathways of 1,2-DCA in the field and suggests that this approach might also be used to characterize dihaloelimination of 1,2-DCA by different bacteria, which needs to be confirmed in future studies

    Artificial dermal substitutes for tissue regeneration: comparison of the clinical outcomes and histological findings of two templates

    Get PDF
    Objective: Artificial dermal substitutes (DSs) are fundamental in physiological wound healing to ensure consistent and enduring wound closure and provide a suitable scaffold to repair tissue. We compared the clinical and histological features of two DSs, Pelnac and Integra, in the treatment of traumatic and iatrogenic skin defects. Methods: This prospective observational study involved 71 randomly selected patients from our hospital. Wound healing was analyzed using the Wound Surface Area Assessment, the Vancouver Scar Scale, and a visual analog scale. Histological and immunohistochemical evaluations were also performed. Results: At 2 weeks, greater regeneration with respect to proliferation of the epidermis and renewal of the dermis was observed with Pelnac than with Integra. At 4 weeks, the dermis had regenerated with both DSs. Both templates induced renewed collagen and revascularization. Differences in the Vancouver Scar Scale score were statistically significant at 4 weeks and 1 year. Pelnac produced a significant increase in contraction at 2 weeks with increasing effectiveness at 4 weeks. Integra produced a higher percentage reduction in the wound surface area and a shorter healing time than Pelnac for wounds >1.5 cm deep. Conclusion: Our observational data indicate that both DSs are effective and applicable in different clinical contexts
    corecore