160 research outputs found

    Machine learning solutions for predicting protein–protein interactions

    Get PDF
    Proteins are social molecules. Recent experimental evidence supports the notion that large protein aggregates, known as biomolecular condensates, affect structurally and functionally many biological processes. Condensate formation may be permanent and/or time dependent, suggesting that biological processes can occur locally, depending on the cell needs. The question then arises as to which extent we can monitor protein-aggregate formation, both experimentally and theoretically and then predict/simulate functional aggregate formation. Available data are relative to mesoscopic interacting networks at a proteome level, to protein-binding affinity data, and to interacting protein complexes, solved with atomic resolution. Powerful algorithms based on machine learning (ML) can extract information from data sets and infer properties of never-seen-before examples. ML tools address the problem of protein–protein interactions (PPIs) adopting different data sets, input features, and architectures. According to recent publications, deep learning is the most successful method. However, in ML-computational biology, convincing evidence of a success story comes out by performing general benchmarks on blind datasets. Results indicate that the state-of-the-art ML approaches, based on traditional and/or deep learning, can still be ameliorated, irrespectively of the power of the method and richness in input features. This being the case, it is quite evident that powerful methods still are not trained on the whole possible spectrum of PPIs and that more investigations are necessary to complete our knowledge of PPI-functional interaction

    Large-scale prediction and analysis of protein sub-mitochondrial localization with DeepMito

    Get PDF
    Background: The prediction of protein subcellular localization is a key step of the big effort towards protein functional annotation. Many computational methods exist to identify high-level protein subcellular compartments such as nucleus, cytoplasm or organelles. However, many organelles, like mitochondria, have their own internal compartmentalization. Knowing the precise location of a protein inside mitochondria is crucial for its accurate functional characterization. We recently developed DeepMito, a new method based on a 1-Dimensional Convolutional Neural Network (1D-CNN) architecture outperforming other similar approaches available in literature. Results: Here, we explore the adoption of DeepMito for the large-scale annotation of four sub-mitochondrial localizations on mitochondrial proteomes of five different species, including human, mouse, fly, yeast and Arabidopsis thaliana. A significant fraction of the proteins from these organisms lacked experimental information about sub-mitochondrial localization. We adopted DeepMito to fill the gap, providing complete characterization of protein localization at sub-mitochondrial level for each protein of the five proteomes. Moreover, we identified novel mitochondrial proteins fishing on the set of proteins lacking any subcellular localization annotation using available state-of-the-art subcellular localization predictors. We finally performed additional functional characterization of proteins predicted by DeepMito as localized into the four different sub-mitochondrial compartments using both available experimental and predicted GO terms. All data generated in this study were collected into a database called DeepMitoDB (available at http://busca.biocomp.unibo.it/deepmitodb), providing complete functional characterization of 4307 mitochondrial proteins from the five species. Conclusions: DeepMitoDB offers a comprehensive view of mitochondrial proteins, including experimental and predicted fine-grain sub-cellular localization and annotated and predicted functional annotations. The database complements other similar resources providing characterization of new proteins. Furthermore, it is also unique in including localization information at the sub-mitochondrial level. For this reason, we believe that DeepMitoDB can be a valuable resource for mitochondrial research

    Huntingtin: A protein with a peculiar solvent accessible surface

    Get PDF
    Taking advantage of the last cryogenic electron microscopy structure of human hunt-ingtin, we explored with computational methods its physicochemical properties, focusing on the solvent accessible surface of the protein and highlighting a quite interesting mix of hydrophobic and hydrophilic patterns, with the prevalence of the latter ones. We then evaluated the probability of exposed residues to be in contact with other proteins, discovering that they tend to cluster in specific regions of the protein. We then found that the remaining portions of the protein surface can contain calcium-binding sites that we propose here as putative mediators for the protein to interact with membranes. Our findings are justified in relation to the present knowledge of huntingtin functional annotation

    Finding functional motifs in protein sequences with deep learning and natural language models

    Get PDF
    Recently, prediction of structural/functional motifs in protein sequences takes advantage of powerful machine learning based approaches. Protein encoding adopts protein language models overpassing standard procedures. Different combinations of machine learning and encoding schemas are available for predicting different structural/functional motifs. Particularly interesting is the adoption of protein language models to encode proteins in addition to evolution information and physicochemical parameters. A thorough analysis of recent predictors developed for annotating transmembrane regions, sorting signals, lipidation and phosphorylation sites allows to investigate the state-of-the-art focusing on the relevance of protein language models for the different tasks. This highlights that more experimental data are necessary to exploit available powerful machine learning methods

    ISPRED-SEQ: Deep Neural Networks and Embeddings for Predicting Interaction Sites in Protein Sequences

    Get PDF
    The knowledge of protein–protein interaction sites (PPIs) is crucial for protein functional annotation. Here we address the problem focusing on the prediction of putative PPIs considering as input protein sequences. The issue is important given the huge volume of protein sequences compared to experimental and/or computed structures. Taking advantage of protein language models, recently developed, and Deep Neural networks, here we describe ISPRED-SEQ, which overpasses state-of-the-art predictors addressing the same problem. ISPRED-SEQ is freely available for testing at https://ispredws.biocomp.unibo.it

    DeepREx-WS: A web server for characterising protein–solvent interaction starting from sequence

    Get PDF
    Protein–solvent interaction provides important features for protein surface engineering when the structure is absent or partially solved. Presently, we can integrate the notion of solvent exposed/buried residues with that of their flexibility and intrinsic disorder to highlight regions where mutations may increase or decrease protein stability in order to modify proteins for biotechnological reasons, while preserving their functional integrity. Here we describe a web server, which provides the unique possibility of integrating knowledge of solvent and non-solvent exposure with that of residue conservation, flexibility and disorder of a protein sequence, for a better understanding of which regions are relevant for protein integrity. The core of the webserver is DeepREx, a novel deep learning-based tool that classifies each residue in the sequence as buried or exposed. DeepREx is trained on a high-quality, non-redundant dataset derived from the Protein Data Bank comprising 2332 monomeric protein chains and benchmarked on a blind test set including 200 protein sequences unrelated with the training set. Results show that DeepREx performs at the state-of-the-art in the field. In turn, the Web Server, DeepREx-WS, supplements the predictions of DeepREx with features that allow a better characterisation of exposed and buried regions: i) residue conservation derived from multiple sequence alignment; ii) local sequence hydrophobicity; iii) residue flexibility computed with MEDUSA; iv) a predictor of secondary structure; v) the presence of disordered regions as derived from MobiDB-Lite3.0. The web server allows browsing, selecting and intersecting the different features. We demonstrate a possible application of the DeepREx-WS for assisting the identification of residues to be variated in protein surface engineering processes

    Large-scale annotation of proteins with labelling methods

    Get PDF
    We revise a major important problem in bioinformatics: how to annotate protein sequences in the genomic era and all the solutions that have been described by implementing tools based on labelling methods. In this paper we mainly focus on our own work and the theoretical methods that are popular in the field of biosequence analysis in modern molecular biology. We will also review a recent application from our group that largely improves on the topology prediction of disulfide bonds in proteins from Eukaryotic organisms

    CoCoNat: a novel method based on deep learning for coiled-coil prediction

    Get PDF
    MOTIVATION: Coiled-coil domains (CCD) are widespread in all organisms and perform several crucial functions. Given their relevance, the computational detection of CCD is very important for protein functional annotation. State-of-the-art prediction methods include the precise identification of CCD boundaries, the annotation of the typical heptad repeat pattern along the coiled-coil helices as well as the prediction of the oligomerization state. RESULTS: In this article, we describe CoCoNat, a novel method for predicting coiled-coil helix boundaries, residue-level register annotation, and oligomerization state. Our method encodes sequences with the combination of two state-of-the-art protein language models and implements a three-step deep learning procedure concatenated with a Grammatical-Restrained Hidden Conditional Random Field for CCD identification and refinement. A final neural network predicts the oligomerization state. When tested on a blind test set routinely adopted, CoCoNat obtains a performance superior to the current state-of-the-art both for residue-level and segment-level CCD. CoCoNat significantly outperforms the most recent state-of-the-art methods on register annotation and prediction of oligomerization states. AVAILABILITY AND IMPLEMENTATION: CoCoNat web server is available at https://coconat.biocomp.unibo.it. Standalone version is available on GitHub at https://github.com/BolognaBiocomp/coconat

    A glance into mthfr deficiency at a molecular level

    Get PDF
    MTHFR deficiency still deserves an investigation to associate the phenotype to protein structure variations. To this aim, considering the MTHFR wild type protein structure, with a catalytic and a regulatory domain and taking advantage of state‐of‐the‐art computational tools, we explore the properties of 72 missense variations known to be disease associated. By computing the thermodynamic ΔΔG change according to a consensus method that we recently introduced, we find that 61% of the disease‐related variations destabilize the protein, are present both in the catalytic and regulatory domain and correspond to known biochemical deficiencies. The propensity of solvent accessible residues to be involved in protein‐protein interaction sites indicates that most of the interacting residues are located in the regulatory domain, and that only three of them, located at the interface of the functional protein homodimer, are both disease‐related and destabilizing. Finally, we compute the protein architecture with Hidden Markov Models, one from Pfam for the catalytic domain and the second computed in house for the regulatory domain. We show that patterns of disease‐associated, physicochemical variation types, both in the catalytic and regulatory domains, are unique for the MTHFR deficiency when mapped into the protein architecture
    • 

    corecore