8 research outputs found

    Utilization of rice straw and different treatments to improve its feed value for ruminants: A review

    No full text
    This paper gives an overview of the availability, nutritive quality, and possible strategies to improve the utilization of rice straw as a feed ingredient for ruminants. Approximately 80% of the rice in the world is grown by small-scale farmers in developing countries, including South East Asia. The large amount of rice straw as a by-product of the rice production is mainly used as a source of feed for ruminant livestock. Rice straw is rich in polysaccharides and has a high lignin and silica content, limiting voluntary intake and reducing degradability by ruminal microorganisms. Several methods to improve the utilization of rice straw by ruminants have been investigated in the past. However, some physical treatments are not practical because of the requirement for machinery or treatments are not economical feasible for the farmers. Chemical treatments, such as NaOH, NH3 or urea, currently seem to be more practical for on-farm use. Alternative treatments to improve the nutritive value of rice straw are the use of ligninolytic fungi (white-rot fungi), with their extracellular ligninolytic enzymes, or specific enzymes degrading cellulose and/or hemicellulose. The use of fungi or enzyme treatments is expected to be a more practical and environmental-friendly approach for enhancing the nutritive value of rice straw and can be cost-effective in the future. Using fungi and enzymes might be combined with the more classical chemical or physical treatments. However, available data on using fungi and enzymes for improving the quality of rice straw are relatively scarce

    Rice Straw Management Effects on Greenhouse Gas Emissions and Mitigation Options

    No full text
    Lowland rice is a significant source of anthropogenic greenhouse gas emissions (GHGEs) and the primary source of agricultural emissions for many developing countries in Asia. At the same time, rice soils represent one of the largest global soil organic carbon sinks. Straw management is a key factor in controlling the emissions and mitigation potential of rice primarily by affecting methane (CH4) from anaerobic decomposition and carbon losses from burning. Achieving climatesmart management of rice while also improving yields and farm profits, however, is challenging due to economic-environmental trade-offs. This balance could be met with appropriate site-specific practices. This chapter discusses these straw management practices that affect yield-scaled GHGEs and mitigation options in different rice environments

    Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): an overview

    No full text
    corecore