273 research outputs found

    Salivary cortisol and α-amylase: subclinical indicators of stress as cardiometabolic risk

    Get PDF
    Currently, the potential for cardiovascular (CV) stress-induced risk is primarily based on the theoretical (obvious) side effects of stress on the CV system. Salivary cortisol and α-amylase, produced respectively by the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic-adrenomedullary (SAM) system during stress response, are still not included in the routine evaluation of CV risk and require additional and definitive validation. Therefore, this article overviews studies published between 2010 and 2015, in which salivary cortisol and α-amylase were measured as stress biomarkers to examine their associations with CV/CMR (cardiometabolic risk) clinical and subclinical indicators. A comprehensive search of PubMed, Web of Science and Scopus electronic databases was performed, and 54 key articles related to the use of salivary cortisol and α-amylase as subclinical indicators of stress and CV/CMR factors, including studies that emphasized methodological biases that could influence the accuracy of study outcomes, were ultimately identified. Overall, the biological impact of stress measured by salivary cortisol and α-amylase was associated with CV/CMR factors. Results supported the use of salivary cortisol and α-amylase as potential diagnostic tools for detecting stress-induced cardiac diseases and especially to describe the mechanisms by which stress potentially contributes to the pathogenesis and outcomes of CV diseases

    The Biological Relevance of NHERF1 Protein in Gynecological Tumors

    Get PDF
    Gynecological cancer management remains challenging and a better understanding of molecular mechanisms that lead to carcinogenesis and development of these diseases is needed to improve the therapeutic approaches. The Na+/H+ exchanger regulatory factor 1 (NHERF1) is a scaffold protein that contains modular protein-interaction domains able to interact with molecules with an impact on carcinogenesis and cancer progression. During recent years, its involvement in gynecological cancers has been explored, suggesting that NHERF1 could be a potential biomarker for the development of new targeted therapies suitable to the management of these tumors. This comprehensive review provides an update on the recent study on NHERF1 activity and its pathological role in cervical and ovarian cancer, as well as on its probable involvement in the therapeutic landscape of these cancer types

    NLRP3 Inflammasome From Bench to Bedside: New Perspectives for Triple Negative Breast Cancer

    Get PDF
    The tumor microenvironment (TME) is crucial in cancer onset, progression and response to treatment. It is characterized by an intricate interaction of immune cells and cytokines involved in tumor development. Among these, inflammasomes are oligomeric molecular platforms and play a key role in inflammatory response and immunity. Inflammasome activation is initiated upon triggering of pattern recognition receptors (Toll-like receptors, NOD-like receptors, and Absent in melanoma like receptors), on the surface of immune cells with the recruitment of caspase-1 by an adaptor apoptosis-associated speck-like protein. This structure leads to the activation of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and participates in different biological processes exerting its effects. To date, the Nod–Like Receptor Protein 3 (NLRP3) inflammasome has been well studied and its involvement has been established in different cancer diseases. In this review, we discuss the structure, biology and mechanisms of inflammasomes with a special focus on the specific role of NLRP3 in breast cancer (BC) and in the sub-group of triple negative BC. The NLRP3 inflammasome and its down-stream pathways could be considered novel potential tumor biomarkers and could open new frontiers in BC treatment

    Normocalcemic primary hyperparathyroidism: a survey in a small village of Southern Italy

    Get PDF
    We investigated the prevalence of normocalcemic primary hyperparathyroidism (NPHPT) in the adult population living in a village in Southern Italy. All residents in 2010 (n=2045) were invited by calls and 1046 individuals accepted to participate. Medical history, calcium intake, calcium, albumin, creatinine, parathyroid hormone (PTH) and 25OHD were evaluated. NPHPT was defined by normal albumin-adjusted serum calcium, elevated plasma PTH, and exclusion of common causes of secondary hyperparathyroidism (SHPT) (serum 25OHD <30 ng/ml, estimated glomerular filtration rate (eGFR) <60 ml/min per 1.73 m(2) and thiazide diuretics use), overt gastrointestinal and metabolic bone diseases. Complete data were available for 685 of 1046 subjects. Twenty subjects did not meet the inclusion criteria and 341 could not be evaluated because of thawing of plasma samples. Classical PHPT was diagnosed in four women (0.58%). For diagnosing NPHPT the upper normal limit of PTH was established in the sample of the population (n=100) who had 25OHD ≥30 ng/ml and eGFR ≥60 ml/min per 1.73 m(2) and was set at the mean+3s.d. Three males (0.44%) met the diagnostic criteria of NPHPT. These subjects were younger and with lower BMI than those with classical PHPT. Our data suggest, in line with previous studies, that NPHPT might be a distinct clinical entity, being either an early phenotype of asymptomatic PHPT or a distinct variant of it. However, we cannot exclude that NPHPT might also represent an early phase of non-classical SHPT, since other variables, in addition to those currently taken into account for the diagnosis of NPHPT, might cumulate in a normocalcemic subject to increase PTH secretion

    High density of tryptase-positive mast cells in human colorectal cancer: a poor prognostic factor related to protease-activated receptor 2 expression

    Get PDF
    Tryptase(+) mast cells (MCs), abundant in the invasive front of tumours, contribute to tissue remodelling. Indeed, protease-activated receptor- 2 (PAR-2) activation by MC-tryptase is considered an oncogenic event in colorectal cancer (CRC). Recently, we have suggested NHERF1 as a potential new marker in CRC. In this study, we aimed to determine the distribution of tryptase(+) MCs and PAR-2 and to examine the relationship between PAR-2 and NHERF1, investigating their reputed usefulness as tumour markers. We studied a cohort of 115 CRC specimens including primary cancer (C) and adjacent normal mucosa (NM) by immunohistochemical double staining, analyzing the protein expression of MC-tryptase, PAR-2 and cytoplasmic NHERF1. MC density was higher in NM than in C. Tumours with high TNM stage and poor grade showed the highest MC density. A higher PAR-2 immunoreactivity characterized tumours most infiltrated by MCs compared with samples with low MC density. Furthermore, PAR-2 overexpression was associated with advanced TNM stage, poor grade and lymphovascular invasion (LVI). A positive correlation existed between tryptase(+) MC density and PAR-2 expression. Cytoplasmic NHERF1 was higher in C than in NM and overexpressing tumours resulted associated with nodal and distant metastases, poor grade and LVI. PAR-2 correlated with cytoplasmic NHERF1 and the PAR-2(+)/cytoplasmic NHERF1(+) expression immunophenotype identified tumours associated with unfavourable prognosis and aggressive clinical parameters. Our data indicate that the high density of tryptase(+) MCs at invasive margins of tumours was associated with advanced stages of CRC and was strongly correlated with PAR-2 expression

    Involvement of nuclear NHERF1 in colorectal cancer progression.

    Get PDF
    NHERF1 (Na+/H+ exchanger regulatory factor 1) is expressed in the luminal membrane of many epithelia, and associated with proteins involved in tumor progression. Alterations of NHERF1 expression in different sites of metastatic colorectal cancer (mCRC) suggest a dynamic role of this protein in colon carcinogenesis. We focused on the observation of the altered expression of NHERF1 from non-neoplastic tissues to metastatic sites by immunohistochemistry. Moreover, we studied, by immunofluorescence, the colocalization between NHERF1 and the epidermal growth factor receptor (EGFR), whose overexpression is implicated in CRC progression. NHERF1 showed a different localization and expression in the examined sites. The distant non-neoplastic tissues showed NHERF1 mostly expressed at the apical membrane, while in surrounding non-neoplastic tissue decreased the apical membrane and increased cytoplasmic immunoreactivity. In adenomas a shift from apical membrane to cytoplasmic localization and nuclear expression were observed. Cytoplasmic staining in the tumor, and metastatic sites was stronger than surrounding non-neoplastic tissue. Furthermore, nuclear NHERF1 expression was noted in 80% of all samples and surprisingly, it appeared already in adenoma lesions, suggesting that NHERF1 represents an early marker of pre-morphological triggering of colorectal carcinogenesis. Then, in few tumors a positive direct correlation between membrane NHERF1 and EGFR expression was evidenced by their colocalization. Nuclear NHERF1 expression, present in the early stages of carcinogenesis and related with poor prognosis, may contribute to the onset of malignant phenotype. Specifically, we hypothesize the direct involvement of nuclear NHERF1 in both carcinogenesis and progression and its role as a potential colorectal cancer marke

    Mechanical transduction of cytoplasmic-to-transmembrane-domain movements in a hyperpolarization-activated cyclic nucleotide-gated cation channel

    Get PDF
    Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels play a critical role in the control of pacemaking in the heart and repetitive firing in neurons. In HCN channels, the intracellular cyclic nucleotide-binding domain (CNBD) is connected to the transmembrane portion of the channel (TMPC) through a helical domain, the C-linker. Although this domain is critical for mechanical signal transduction, the conformational dynamics in the C-linker that transmit the nucleotide-binding signal to the HCN channel pore are unknown. Here, we use linear response theory to analyze conformational changes in the C-linker of the human HCN1 protein, which couple cAMP binding in the CNBD with gating in the TMPC. By applying a force to the tip of the so-called "elbow" of the C-linker, the coarse-grained calculations recapitulate the same conformational changes triggered by cAMP binding in experimental studies. Furthermore, in our simulations, a displacement of the C-linker parallel to the membrane plane (i.e. horizontally) induced a rotational movement resulting in a distinct tilting of the transmembrane helices. This movement, in turn, increased the distance between the voltage-sensing S4 domain and the surrounding transmembrane domains and led to a widening of the intracellular channel gate. In conclusion, our computational approach, combined with experimental data, thus provides a more detailed understanding of how cAMP binding is mechanically coupled over long distances to promote voltage-dependent opening of HCN channels

    Extended Adjuvant Endocrine Treatment in Luminal Breast Cancers in the Era of Genomic Tests

    Get PDF
    In patients with early-stage endocrine receptor-positive (ER+) breast cancer (BC), adjuvant endocrine therapy (ET) for 5 years is the standard of care. However, for some patients, the risk of recurrence remain high for up to 15 years after diagnosis and extended ET beyond 5 years may be a reasonable option. Nevertheless, this strategy significantly increases the occurrence of side effects. Here we summarize the available evidence from randomized clinical trials on the efficacy and safety profile of extended ET and discuss available clinical and genomic tools helpful to select eligible patients in daily clinical practice

    Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function

    Get PDF
    cAMP signaling in the brain mediates several higher order neural processes. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels directly bind cAMP through their cytoplasmic cyclic nucleotide binding domain (CNBD), thus playing a unique role in brain function. Neuronal HCN channels are also regulated by tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), an auxiliary subunit that antagonizes the effects of cAMP by interacting with the channel CNBD. To unravel the molecular mechanisms underlying the dual regulation of HCN channel activity by cAMP/TRIP8b, we determined the NMR solution structure of the HCN2 channel CNBD in the cAMP-free form and mapped on it the TRIP8b interaction site. We reconstruct here the full conformational changes induced by cAMP binding to the HCN channel CNBD. Our results show that TRIP8b does not compete with cAMP for the same binding region; rather, it exerts its inhibitory action through an allosteric mechanism, preventing the cAMP-induced conformational changes in the HCN channel CNBD
    • …
    corecore