87 research outputs found

    Productive resistance within the public sector: exploring organisational culture

    Get PDF
    The article examines how South Korean civil servants responded to the introduction of pay for performance. Drawing upon 31 in-depth interviews with career civil servants, it identifies what became known as 1/n, a form of ‘discreet resistance’ that emerged and evolved. The analytical framework allows productive resistance to be seen as ebbing and flowing during organisational change that sees institutionalisation, deinstitutionalisation and re-institutionalisation. In understanding the cultural context of organisational resistance the contribution is three-fold. First, a nuanced definition and understanding of productive resistance. Second, it argues that productive resistance must be seen as part of a process that does not simply reflect ‘offer and counter-offer’ within the change management process. Thirdly, it identifies differences within groups and sub-cultures concerning commitment towards resistance and how these fissures contribute towards change as new interpretive schemes and justifications are presented in light of policy reformulations

    Recognition of the Phanerozoic “Young Granite Gneiss” in the central Yeongnam Massif

    Get PDF
    Up to now, all the high-grade gneisses of the Korean peninsula have been regarded as Precambrian basement rocks and presence of the Phanerozoic high-grade metamorphic rocks have remained unknown. However, such granite gneiss is discovered through this study from the central Yeongnam massif near Gimcheon. SHRIMP zircon U-Pb age determinations on the granite gneiss, having well-developed gneissic foliations and migmatitic textures, reveal concordant age of ca. 250 Ma indicating the Early Triassic emplacement of this pluton, which is in contradict to the previous belief that it is a Precambrian product. Even though the granite gneiss reveals well-developed gneissic foliations and some zircons show rather low Th/U ratios, the metamorphic age has not been determined successfully. However, the age of metamorphism can be constrained as middle Triassic considering the absence of any evidences of metamorphism from the nearby granitic plutons having emplacement ages of ca. 225 Ma. Early Triassic emplacement and subsequent Middle Triassic metamorphism of the granite gneiss from the Yeongnam massif bear a remarkable resemblance to the case of South China block. We suggest the possibility that Early to Middle Triassic metamorphism of the Korean peninsula might be products of the intracontinental collisional events not directly related with the Early Triassic continental collision event

    Global Functional Analyses of Cellular Responses to Pore-Forming Toxins

    Get PDF
    Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs

    SHRIMP U-Pb dating of detrital zircons in paragneiss from Oki-Dogo Island, western Japan

    No full text

    Frequency and Quadrature-Amplitude Modulation for Downlink Cellular OFDMA Networks

    No full text
    The distribution of the intercell interference (ICI) in conventional cellular networks employing orthogonal frequency-division multiple-access (OFDMA) with quadrature-amplitude modulation (QAM) tends to approach a Gaussian distribution when all available subcarriers in each cell are fully loaded. Recently, it has been also shown that the worst-case distribution of the ICI as additive noise in wireless networks with respect to the channel capacity is Gaussian. Thus, the channel capacity in cellular networks is expected to be further enhanced when the ICI could be designed properly so that it has a non-Gaussian distribution. This observation motivates us to propose, in this paper, a downlink cellular OFDMA network employing a modulation scheme called frequency and QAM (FQAM). We also derive maximum-likelihood metrics for the binary or non-binary error-correcting codes employed in the proposed network and propose their practical sub-optimal versions. Numerical results demonstrate that the distribution of the ICI in the proposed network deviates far from the Gaussian distribution. As a result, the transmission rates for the cell-edge users in the proposed network are significantly improved. In addition, the measurement results using practically implemented FQAM-based OFDMA systems verify that the transmission rates for the cell-edge users can dramatically increase, compared with the conventional QAM-based OFDMA network.X112623sciescopu

    TXH11106: A Third-Generation MreB Inhibitor with Enhanced Activity against a Broad Range of Gram-Negative Bacterial Pathogens

    No full text
    The emergence of multi-drug-resistant Gram-negative pathogens highlights an urgent clinical need to explore and develop new antibiotics with novel antibacterial targets. MreB is a promising antibacterial target that functions as an essential elongasome protein in most Gram-negative bacterial rods. Here, we describe a third-generation MreB inhibitor (TXH11106) with enhanced bactericidal activity versus the Gram-negative pathogens Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa compared to the first- and second-generation compounds A22 and CBR-4830, respectively. Large inocula of these four pathogens are associated with a low frequency of resistance (FOR) to TXH11106. The enhanced bactericidal activity of TXH11106 relative to A22 and CBR-4830 correlates with a correspondingly enhanced capacity to inhibit E. coli MreB ATPase activity via a noncompetitive mechanism. Morphological changes induced by TXH11106 in E. coli, K. pneumoniae, A. baumannii, and P. aeruginosa provide further evidence supporting MreB as the bactericidal target of the compound. Taken together, our results highlight the potential of TXH11106 as an MreB inhibitor with activity against a broad spectrum of Gram-negative bacterial pathogens of acute clinical importance

    Mother-to-Infant Bonding is Associated with Maternal Insomnia, Snoring, Cognitive Arousal, and Infant Sleep Problems and Colic

    No full text
    Objective: Emerging evidence links maternal and infant sleep problems to impairments in the mother-to-infant bond, but the independence and directionality of these associations remain unclear. The present study characterized concurrent and prospective effects of maternal sleep disturbances and poor infant sleep on the mother-infant relationship. As common sequalae of problematic sleep, nocturnal cognitive hyperarousal and daytime sleepiness were investigated as facilitating mechanisms. Participants: Sixty-seven pregnant women enrolled in a prospective study on maternal sleep. Methods: Sociodemographic information and clinical symptoms were measured prenatally then weekly across the first two postpartum months. Women reported insomnia symptoms, sleep duration, snoring, daytime sleepiness, nocturnal cognitive arousal (broadly focused and perinatal-specific), perseverative thinking, depression, infant colic, infant sleep quality, and mother-infant relationship quality. Mixed effects models were conducted to test hypotheses. Results: Prenatal snoring and weak maternal-fetal attachment augured poorer postpartum bonding. Poor infant sleep was associated with increased odds for maternal insomnia and short sleep. Impairments in the mother-to-infant bond were linked to maternal insomnia, nocturnal perinatal-focused rumination, daytime sleepiness, depression, and poor infant sleep. Postnatal insomnia predicted future decreases in mother-infant relationship quality, and nocturnal cognitive hyperarousal partially mediated this association. Conclusions: Both maternal and infant sleep problems were associated with poorer mother-to-infant bonding, independent of the effects of maternal depression and infant colic. Perseverative thinking at night, particularly on infant-related concerns, was linked to impaired bonding, rejection and anger, and infant-focused anxiety. Improving maternal and infant sleep, and reducing maternal cognitive arousal, may improve the maternal-to-infant bond
    corecore