74 research outputs found

    On the nature of sn stars. I. A detailed abundance study

    Get PDF
    The sn stars present sharp Balmer lines, sharp metallic lines and broad coreless He I lines. Initially Abt & Levato proposed a shell-like nature to explain the sn stars, although this scenario was subsequently questioned. We aim to derive abundances for a sample of 9 stars, including sn and non-sn stars, to determine the possible relation between sn and CP stars. We analysed the photospheric chemical composition of sn stars and show that approximately 40% of them display chemical peculiarities (such as He-weak and HgMn stars) within a range of temperature of 10300 - 14500 K. We have studied the possible contribution of different processes to the broad He I lines present in the sn stars. Although NLTE effects could not be completely ruled out, it seems that NLTE is not directly related to the broad He I profiles observed in the sn stars. The broad-line He I 4026 is the clearest example of the sn characteristics in our sample. We succesfully fit this line in 4 out of 7 sn stars by using the appropriate Stark broadening tables, while small differences appear in the other 3 stars. Studying the plots of abundance vs depth for the He I lines resulted in some sn stars probably being stratified in He. However, a further study of variability in the He I lines would help for determining whether a possible non-uniform He superficial distribution could also play a role in these sn stars. We conclude that the broad He I lines that characterize the sn class could be modelled (at least in some of these stars) by the usual radiative transfer process with Stark broadening, without needing another broadening mechanism. The observed line broadening in sn stars seems to be related to the "normal" He line formation that originates in these atmospheres. (abridged)Comment: 18 pages, 11 figures, Astronomy & Astrophysics accepte

    On the Ages of Exoplanet Host Stars

    Full text link
    We obtained spectra, covering the CaII H and K region, for 49 exoplanet host (EH) stars, observable from the southern hemisphere. We measured the chromospheric activity index, Rhk. We compiled previously published values of this index for the observed objects as well as the remaining EH stars in an effort to better smooth temporal variations and derive a more representative value of the average chromospheric activity for each object. We used the average index to obtain ages for the group of EH stars. In addition we applied other methods, such as: Isochrone, lithium abundance, metallicity and transverse velocity dispersions, to compare with the chromospheric results. The kinematic method is a less reliable age estimator because EH stars lie red-ward of Parenago's discontinuity in the transverse velocity dispersion vs dereddened B-V diagram. The chromospheric and isochrone techniques give median ages of 5.2 and 7.4 Gyr, respectively, with a dispersion of 4 Gyr. The median age of F and G EH stars derived by the isochrone technique is 1--2 Gyr older than that of identical spectral type nearby stars not known to be associated with planets. However, the dispersion in both cases is large, about 2--4 Gyr. We searched for correlations between the chromospheric and isochrone ages and Lir/L* (the excess over the stellar luminosity) and the metallicity of the EH stars. No clear tendency is found in the first case, whereas the metallicy dispersion seems to slightly increase with age.Comment: 22 pages, 25 figures, A&A accepte

    HD 80606: Searching the chemical signature of planet formation

    Get PDF
    (Abridged) Binary systems with similar components are ideal laboratories which allow several physical processes to be tested, such as the possible chemical pattern imprinted by the planet formation process. Aims. We explore the probable chemical signature of planet formation in the remarkable binary system HD 80606 - HD 80607. The star HD 80606 hosts a giant planet with 4 MJup detected by both transit and radial velocity techniques, being one of the most eccentric planets detected to date. We study condensation temperature Tc trends of volatile and refractory element abundances to determine whether there is a depletion of refractories that could be related to the terrestrial planet formation. Methods. We carried out a high-precision abundance determination in both components of the binary system, using a line-by-line strictly differential approach, using the Sun as a reference and then using HD 80606 as reference. We used an updated version of the program FUNDPAR, together with ATLAS9 model atmospheres and the MOOG code. Conclusions. From the study of Tc trends, we concluded that the stars HD 80606 and HD 80607 do not seem to be depleted in refractory elements, which is different for the case of the Sun. Then, the terrestrial planet formation would have been less efficient in the components of this binary system than in the Sun. The lack of a trend for refractory elements with Tc between both stars implies that the presence of a giant planet do not neccesarily imprint a chemical signature in their host stars, similar to the recent result of Liu et al. (2014). This is also in agreement with Melendez et al. (2009), who suggest that the presence of close-in giant planets might prevent the formation of terrestrial planets. Finally, we speculate about a possible planet around the star HD 80607.Comment: 19 pages, 9 figures, A&A accepte

    Signatures of rocky planet engulfment in HAT-P-4. Implications for chemical tagging studies

    Full text link
    Aims. To explore the possible chemical signature of planet formation in the binary system HAT-P-4, by studying abundance vs condensation temperature Tc trends. The star HAT-P-4 hosts a planet detected by transits while its stellar companion does not have any detected planet. We also study the Lithium content, which could shed light on the problem of Li depletion in exoplanet host stars. Conclusions. The exoplanet host star HAT-P-4 is found to be ~0.1 dex more metal rich than its companion, which is one of the highest differences in metallicity observed in similar systems. This could have important implications for chemical tagging studies, disentangling groups of stars with a common origin. We rule out a possible peculiar composition for each star as lambda Boo, delta Scuti or a Blue Straggler. The star HAT-P-4 is enhanced in refractory elements relative to volatile when compared to its stellar companion. Notably, the Lithium abundance in HAT-P-4 is greater than in its companion by ~0.3 dex, which is contrary to the model that explains the Lithium depletion by the presence of planets. We propose a scenario where, at the time of planet formation, the star HAT-P-4 locked the inner refractory material in planetesimals and rocky planets, and formed the outer gas giant planet at a greater distance. The refractories were then accreted onto the star, possibly due to the migration of the giant planet. This explains the higher metallicity, the higher Lithium content, and the negative Tc trend detected. A similar scenario was recently proposed for the solar twin star HIP 68468, which is in some aspects similar to HAT-P-4. We estimate a mass of at least Mrock ~ 10 Mearth locked in refractory material in order to reproduce the observed Tc trends and metallicity.Comment: 5 pages, 6 figures, A&A Letters accepte

    High-precision analysis of binary stars with planets. I. Searching for condensation temperature trends in the HD 106515 system

    Full text link
    We explore the probable chemical signature of planet formation in the remarkable binary system HD 106515. The A star hosts a massive long-period planet with 9 MJup detected by radial velocity. We also refine stellar and planetary parameters by using non-solar-scaled opacities when modeling the stars. Methods. We carried out a simultaneous determination of stellar parameters and abundances, by applying for the first time non-solar-scaled opacities in this binary system, in order to reach the highest possible precision. Results. The stars A and B in the binary system HD 106515 do not seem to be depleted in refractory elements, which is different when comparing the Sun with solar-twins. Then, the terrestrial planet formation would have been less efficient in the stars of this binary system. Together with HD 80606/7, this is the second binary system which does not seem to present a (terrestrial) signature of planet formation, and hosting both systems an eccentric giant planet. This is in agreement with numerical simulations, where the early dynamical evolution of eccentric giant planets clear out most of the possible terrestrial planets in the inner zone. We refined the stellar mass, radius and age for both stars and found a notable difference of 78% in R compared to previous works. We also refined the planet mass to mp sini = 9.08 +/- 0.20 MJup, which differs by 6% compared with literature. In addition, we showed that the non-solar-scaled solution is not compatible with the classical solar-scaled method, and some abundance differences are comparable to NLTE or GCE effects specially when using the Sun as reference. Then, we encourage the use of non-solar-scaled opacities in high-precision studies such as the detection of Tc trends.[abridged]Comment: 9 pages, 10 figures, A&A accepted. arXiv admin note: text overlap with arXiv:1507.0812

    ARES+MOOG - a practical overview of an EW method to derive stellar parameters

    Full text link
    The goal of this document is to describe the important practical aspects in the use of an Equivalent Width (EW) method for the derivation of spectroscopic stellar parameters. A general description of the fundamental steps composing any EW method is given, together with possible differences that may be found in different methods used in the literature. Then ARES+MOOG is then used as an example where each step of the method is described in detail. A special focus is given for the specific steps of this method, namely the use of a differential analysis to define the atomic data for the adopted line list, the automatic EW determinations, and the way to find the best parameters at the end of the procedure. Finally, a practical tutorial is given, where we focus on simple exercises useful to illustrate and explain the dependence of the abundances with the assumed stellar parameters. The interdependences are described and a clear procedure is given to find the "final" stellar parameters.Comment: 15 pages, 4 figures, accepted for publication as a chapter in "Determination of Atmospheric Parameters of B, A, F and G Type Stars", Springer (2014), eds. E. Niemczura, B. Smalley, W. Pyc

    Stellar parameters and chemical abundances of 223 evolved stars with and without planets

    Get PDF
    We present fundamental stellar parameters and chemical abundances for a sample of 86 evolved stars with planets and for a control sample of 137 stars without planets. The analysis was based on both high S/N and resolution echelle spectra. The goals of this work are i) to investigate chemical differences between stars with and without planets; ii) to explore potential differences between the properties of the planets around giants and subgiants; and iii) to search for possible correlations between these properties and the chemical abundances of their host stars. In agreement with previous studies, we find that subgiants with planets are, on average, more metal-rich than subgiants without planets by ~ 0.16 dex. The [Fe/H] distribution of giants with planets is centered at slightly subsolar metallicities and there is no metallicity enhancement relative to the [Fe/H] distribution of giants without planets. Furthermore, contrary to recent results, we do not find any clear difference between the metallicity distributions of stars with and without planets for giants with M > 1.5 Msun. With regard to the other chemical elements, the analysis of the [X/Fe] distributions shows differences between giants with and without planets for some elements, particularly V, Co, and Ba. Analyzing the planet properties, some interesting trends might be emerging: i) multi-planet systems around evolved stars show a slight metallicity enhancement compared with single-planet systems; ii) planets with a ≲\lesssim 0.5 AU orbit subgiants with [Fe/H] > 0 and giants hosting planets with a ≲\lesssim 1 AU have [Fe/H] < 0; iii) higher-mass planets tend to orbit more metal-poor giants with M < 1.5 Msun, whereas planets around subgiants seem to follow the planet-mass metallicity trend observed on dwarf hosts; iv) planets orbiting giants show lower orbital eccentricities than those orbiting subgiants and dwarfs.Comment: 49 pages, 31 figures, Accepted for publication in A&A, abstract shortened - corrected references, typos, acknowledgements include

    KELT-17: a chemically peculiar Am star and a hot-Jupiter planet

    Full text link
    Context. The detection of planets orbiting chemically peculiar stars is very scarcely known in the literature. Aims. To determine the detailed chemical composition of the remarkable planet host star KELT-17. This object hosts a hot-Jupiter planet with 1.31 MJup detected by transits, being one of the more massive and rapidly rotating planet hosts to date. We aimed to derive a complete chemical pattern for this star, in order to compare it with those of chemically peculiar stars. Methods. We carried out a detailed abundance determination in the planet host star KELT-17 via spectral synthesis. Stellar parameters were estimated iteratively by fitting Balmer line profiles and imposing the Fe ionization balance, using the program SYNTHE together with plane-parallel ATLAS12 model atmospheres. Specific opacities for an arbitrary composition and microturbulence velocity vmicro were calculated through the Opacity Sampling (OS) method. The abundances were determined iteratively by fitting synthetic spectra to metallic lines of 16 different chemical species using the program SYNTHE. The complete chemical pattern of KELT-17 was compared to the recently published average pattern of Am stars. We estimated the stellar radius by two methods: a) comparing the synthetic spectral energy distribution with the available photometric data and the Gaia parallax, and b) using a Bayesian estimation of stellar parameters using stellar isochrones. Results. We found overabundances of Ti, Cr, Mn, Fe, Ni, Zn, Sr, Y, Zr, and Ba, together with subsolar values of Ca and Sc. Notably, the chemical pattern agrees with those recently published of Am stars, being then KELT-17 the first exoplanet host whose complete chemical pattern is unambiguously identified with this class. The stellar radius derived by two different methods agrees to each other and with those previously obtained in the literature.Comment: 5 pages, 8 figures, 2 tables, A&A accepte

    The cold origin of the warm dust around epsilon Eridani

    Full text link
    Context: The K2V star eps Eri hosts one known inner planet, an outer Kuiper belt analog, and an inner disk of warm dust. Spitzer/IRS measurements indicate that the warm dust is present at distances as close as a few AU from the star. Its origin is puzzling, since an "asteroid belt" that could produce this dust would be unstable because of the known inner planet. Aims: Here we test the hypothesis that the observed warm dust is generated by collisions in the outer belt and is transported inward by Poynting-Robertson (P-R) drag and strong stellar winds. Methods: We simulated a steady-state distribution of dust particles outside 10AU with a collisional code and in the inner region (r<10AU) with single-particle numerical integrations. By assuming homogeneous spherical dust grains composed of water ice and silicate, we calculated the thermal emission of the dust and compared it with observations. We investigated two different orbital configurations for the inner planet inferred from RV measurements, one with a highly eccentric orbit of e=0.7 and another one with a moderate one of e=0.25. We also produced a simulation without a planet. Results: Our models can reproduce the shape and magnitude of the observed SED from mid-IR to sub-mm wavelengths, as well as the Spitzer/MIPS radial brightness profiles. The best-fit dust composition includes both ice and silicates. The results are similar for the two possible planetary orbits and without a planet. Conclusions: The observed warm dust in the system can indeed stem from the outer belt and be transported inward by P-R and stellar wind drag. The inner planet has little effect on the distribution of dust, so that the planetary orbit could not be constrained. Reasonable agreement between the model and observations can only be achieved by relaxing the assumption of purely silicate dust and assuming a mixture of silicate and ice in comparable amounts.Comment: 9 pages, 9 figures, abstract abridge

    Elemental abundances differences in the massive planet-hosting wide binary HD 196067-68

    Full text link
    It has been suggested that small chemical anomalies observed in planet-hosting wide binary systems could be due to planet signatures, where the role of the planetary mass is still unknown. We search for a possible planet signature by analyzing the Tc trends in the remarkable binary system HD196067-HD196068. At the moment, only HD196067 is known to host a planet which is near the brown dwarf regime. We take advantage of the strong physical similarity between both stars, which is crucial to achieving the highest possible precision in stellar parameters and elemental chemical abundances. This system gives us a unique opportunity to explore if a possible depletion of refractories in a binary system could be inhibited by the presence of a massive planet. We performed a line-by-line chemical differential study, employing the non-solar-scaled opacities, in order to reach the highest precision in the calculations. After differentially comparing both stars, HD196067 displays a clear deficiency in refractory elements in the Tc plane, a lower iron content (0.051 dex) and also a lower Li I content (0.14 dex) than its companion. In addition, the differential abundances reveal a Tc trend. These targets represent the first cases of an abundance difference around a binary system hosting a super-Jupiter. Although we explored several scenarios to explain the chemical anomalies, none of them can be entirely ruled out. Additional monitoring of the system as well as studies of larger sample of wide binary systems hosting massive planets, are needed to better understand the chemical abundance trend observed in HD196067-68.Comment: 9 pages, six figures, three table
    • …
    corecore