819 research outputs found

    Gate-controlled nuclear magnetic resonance in an AlGaAs/GaAs quantum Hall device

    Full text link
    We study the resistively detected nuclear magnetic resonance (NMR) in an AlGaAs/GaAs quantum Hall device with a side gate. The strength of the hyperfine interaction between electron and nuclear spins is modulated by tuning a position of the two-dimensional electron systems with respect to the polarized nuclear spins using the side-gate voltages. The NMR frequency is systematically controlled by the gate-tuned technique in a semiconductor device.Comment: 3 pages, 4 figures, submitted to Appl. Phys. Let

    Concatenated dynamical decoupling in a solid-state spin bath

    Full text link
    Concatenated dynamical decoupling (CDD) pulse sequences hold much promise as a strategy to mitigate decoherence in quantum information processing. It is important to investigate the actual performance of these dynamical decoupling strategies in real systems that are promising qubit candidates. In this Rapid Communication, we compute the echo decay of concatenations of the Hahn echo sequence for a solid-state electronic spin qubit in a nuclear spin bath using a cluster expansion technique. We find that each level of concatenation reverses the effect of successive levels of intrabath fluctuations. On the one hand, this advances CDD as a versatile and realistic decoupling strategy. On the other hand, this invalidates, as overly optimistic, results of the simple pair approximation used previously to study restoration, through CDD, of coherence lost to a mesoscopic spin bath

    Optimized pulse sequences for suppressing unwanted transitions in quantum systems

    Full text link
    We investigate the nature of the pulse sequence so that unwanted transitions in quantum systems can be inhibited optimally. For this purpose we show that the sequence of pulses proposed by Uhrig [Phys. Rev. Lett. \textbf{98}, 100504 (2007)] in the context of inhibition of environmental dephasing effects is optimal. We derive exact results for inhibiting the transitions and confirm the results numerically. We posit a very significant improvement by usage of the Uhrig sequence over an equidistant sequence in decoupling a quantum system from unwanted transitions. The physics of inhibition is the destructive interference between transition amplitudes before and after each pulse.Comment: 5 figure

    Looping on the Bloch sphere: Oscillatory effects in dephasing of qubits subject to broad-spectrum noise

    Full text link
    For many implementations of quantum computing, 1/f and other types of broad-spectrum noise are an important source of decoherence. An important step forward would be the ability to back out the characteristics of this noise from qubit measurements and to see if it leads to new physical effects. For certain types of qubits, the working point of the qubit can be varied. Using a new mathematical method that is suited to treat all working points, we present theoretical results that show how this degree of freedom can be used to extract noise parameters and to predict a new effect: noise-induced looping on the Bloch sphere. We analyze data on superconducting qubits to show that they are very near the parameter regime where this looping should be observed.Comment: 4 pages, 3 figure

    Switchable coupling for superconducting qubits using double resonance in the presence of crosstalk

    Full text link
    Several methods have been proposed recently to achieve switchable coupling between superconducting qubits. We discuss some of the main considerations regarding the feasibility of implementing one of those proposals: the double-resonance method. We analyze mainly issues related to the achievable effective coupling strength and the effects of crosstalk on this coupling approach. We also find a new, crosstalk-assisted coupling channel that can be an attractive alternative when implementing the double-resonance coupling proposal.Comment: 4 pages, 3 figure

    Polarization and frequency disentanglement of photons via stochastic polarization mode dispersion

    Full text link
    We investigate the quantum decoherence of frequency and polarization variables of photons via polarization mode dispersion in optical fibers. By observing the analogy between the propagation equation of the field and the Schr\"odinger equation, we develop a master equation under Markovian approximation and analytically solve for the field density matrix. We identify distinct decay behaviors for the polarization and frequency variables for single-photon and two-photon states. For the single photon case, purity functions indicate that complete decoherence for each variable is possible only for infinite fiber length. For entangled two-photon states passing through separate fibers, entanglement associated with each variable can be completely destroyed after characteristic finite propagation distances. In particular, we show that frequency disentanglement is independent of the initial polarization status. For propagation of two photons in a common fiber, the evolution of a polarization singlet state is addressed. We show that while complete polarization disentanglement occurs at a finite propagation distance, frequency entanglement could survive at any finite distance for gaussian states.Comment: 2 figure

    Non-equilibrium dynamics of a system with Quantum Frustration

    Get PDF
    Using flow equations, equilibrium and non-equilibrium dynamics of a two-level system are investigated, which couples via non-commuting components to two independent oscillator baths. In equilibrium the two-level energy splitting is protected when the TLS is coupled symmetrically to both bath. A critical asymmetry angle separates the localized from the delocalized phase. On the other hand, real-time decoherence of a non-equilibrium initial state is for a generic initial state faster for a coupling to two baths than for a single bath.Comment: 22 pages, 9 figure

    Spontaneously modulated spin textures in a dipolar spinor Bose-Einstein condensate

    Full text link
    Helical spin textures in a 87^{87}Rb F=1 spinor Bose-Einstein condensate are found to decay spontaneously toward a spatially modulated structure of spin domains. This evolution is ascribed to magnetic dipolar interactions that energetically favor the short-wavelength domains over the long-wavelength spin helix. This is confirmed by eliminating the dipolar interactions by a sequence of rf pulses and observing a suppression of the formation of the short-range domains. This study confirms the significance of magnetic dipole interactions in degenerate 87^{87}Rb F=1 spinor gases

    Soft-Pulse Dynamical Decoupling with Markovian Decoherence

    Full text link
    We consider the effect of broadband decoherence on the performance of refocusing sequences, having in mind applications of dynamical decoupling in concatenation with quantum error correcting codes as the first stage of coherence protection. Specifically, we construct cumulant expansions of effective decoherence operators for a qubit driven by a pulse of a generic symmetric shape, and for several sequences of π\pi- and π/2\pi/2-pulses. While, in general, the performance of soft pulses in decoupling sequences in the presence of Markovian decoherence is worse than that of the ideal δ\delta-pulses, it can be substantially improved by shaping.Comment: New version contains minor content clarification

    Reducing Constraints on Quantum Computer Design by Encoded Selective Recoupling

    Get PDF
    The requirement of performing both single-qubit and two-qubit operations in the implementation of universal quantum logic often leads to very demanding constraints on quantum computer design. We show here how to eliminate the need for single-qubit operations in a large subset of quantum computer proposals: those governed by isotropic and XXZ,XY-type anisotropic exchange interactions. Our method employs an encoding of one logical qubit into two physical qubits, while logic operations are performed using an analogue of the NMR selective recoupling method.Comment: 5 pages, 1 table, no figures. Published versio
    corecore