67 research outputs found

    T-cell and serological responses to Erp, an exported Mycobacterium tuberculosis protein, in tuberculosis patients and healthy individuals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of antigens able to differentiate tuberculosis (TB) disease from TB infection would be valuable. Cellular and humoral immune responses to Erp (Exported repetitive protein) – a recently identified <it>M. tuberculosis </it>protein – have not yet been investigated in humans and may contribute to this aim.</p> <p>Methods</p> <p>We analyzed the cellular and humoral immune responses to Erp, ESAT-6, Ag85B and PPD in TB patients, in BCG<sup>+ </sup>individuals without infection, BCG<sup>+ </sup>individuals with latent TB infection (LTBI) and BCG<sup>- </sup>controls. We used lymphoproliferation, ELISpot IFN-γ, cytokine production assays and detection of specific human antibodies against recombinant <it>M. tuberculosis </it>proteins.</p> <p>Results</p> <p>We included 22 TB patients, 9 BCG<sup>+ </sup>individuals without TB infection, 7 LTBI and 7 BCG<sup>- </sup>controls. Erp-specific T cell counts were higher in LTBI than in the other groups. Erp-specific T cell counts were higher in LTBI subjects than TB patients (median positive frequency of 211 SFC/10<sup>6 </sup>PBMC (range 118–2000) for LTBI subjects compared to 80 SFC/10<sup>6 </sup>PBMC (range 50–191), p = 0.019); responses to PPD and ESAT-6 antigens did not differ between these groups. IFN-γ secretion after Erp stimulation differed between TB patients and LTBI subjects (p = 0.02). Moreover, LTBI subjects but not TB patients or healthy subjects produced IgG3 against Erp.</p> <p>Conclusion</p> <p>The frequencies of IFN-γ-producing specific T cells, the IFN-γ secretion and the production of IgG3 after Erp stimulation are higher in LTBI subjects than in TB patients, whereas PPD and ESAT-6 are not.</p

    Longevity and Composition of Cellular Immune Responses Following Experimental Plasmodium falciparum Malaria Infection in Humans

    Get PDF
    Cellular responses to Plasmodium falciparum parasites, in particular interferon-gamma (IFNγ) production, play an important role in anti-malarial immunity. However, clinical immunity to malaria develops slowly amongst naturally exposed populations, the dynamics of cellular responses in relation to exposure are difficult to study and data about the persistence of such responses are controversial. Here we assess the longevity and composition of cellular immune responses following experimental malaria infection in human volunteers. We conducted a longitudinal study of cellular immunological responses to sporozoites (PfSpz) and asexual blood-stage (PfRBC) malaria parasites in naïve human volunteers undergoing single (n = 5) or multiple (n = 10) experimental P. falciparum infections under highly controlled conditions. IFNγ and interleukin-2 (IL-2) responses following in vitro re-stimulation were measured by flow-cytometry prior to, during and more than one year post infection. We show that cellular responses to both PfSpz and PfRBC are induced and remain almost undiminished up to 14 months after even a single malaria episode. Remarkably, not only ‘adaptive’ but also ‘innate’ lymphocyte subsets contribute to the increased IFNγ response, including αβT cells, γδT cells and NK cells. Furthermore, results from depletion and autologous recombination experiments of lymphocyte subsets suggest that immunological memory for PfRBC is carried within both the αβT cells and γδT compartments. Indeed, the majority of cytokine producing T lymphocytes express an CD45RO+ CD62L- effector memory (EM) phenotype both early and late post infection. Finally, we demonstrate that malaria infection induces and maintains polyfunctional (IFNγ+IL-2+) EM responses against both PfRBC and PfSpz, previously found to be associated with protection. These data demonstrate that cellular responses can be readily induced and are long-lived following infection with P. falciparum, with a persisting contribution by not only adaptive but also (semi-)innate lymphocyte subsets. The implications hereof are positive for malaria vaccine development, but focus attention on those factors potentially inhibiting such responses in the field

    Probable macrophage origin of the lipopolysaccharide-induced cytostatic effect on intra-erythrocytic malarial parasites (plasmodium vinckei).

    No full text
    This study showed that intra-erythrocytic Plasmodium vinckei parasites taken from either normal, irradiated, nude or splenectomized mice 7–8 hr after the injection of a small dose of bacterial lipopolysaccharide (LPS) incorporate hypoxanthine more slowly in an in vitro assay than parasites from saline-treated controls. The incorporation by parasites of isoleucine, which was also measured in some experiments, was similarly affected. However, this cytostatic effect on parasite metabolism was found to be markedly reduced in experiments with mice which had received an intravenous injection of silica dust 28–30 hr before being injected with LPS. These findings indicate that macrophages, being radioresistant and silica-sensitive, are the source of the cytostatic effect. The present results also imply that T cells are not required in the response, and they show that the host cells mediating this response are not restricted to the spleen. It was also shown that an intravenous injection of a small dose of LPS into mice infected with P. vinckei 24 hr previously, could temporarily arrest the rise in parasitaemia in these animals, thereby prolonging their survival. This protection afforded by LPS was also found to be radioresistant and T-independent. It is suggested that the effect on parasitaemia seen in vivo and the cytostatic effect in vitro are both due to the release of a soluble factor from macrophages which is ultimately capable of causing intra-erythrocytic parasite death. P. vinckei-infected mice exhibited symptoms of endotoxaemia following the injection of LPS. However, no clear relationship was noted between the severity of the illness in the host and the cytostatic effect on the parasites

    Atypical IgG subclass antibody responses to Plasmodium falciparum asexual stage antigens

    No full text
    The ability of Plasmedium falciparum to induce long-term immuunity in the absence of continual restimulation has often been questioned. Recently it has been shown that, while a high proportion of individuals living in areas of high malaria endemicity have antibodies to merozoite surface antigen 2 (MSA2; MSP2) of P. falciparum, these antibodies are primarily of the IgG3 subclass. In this article, Antonio Ferrante and Christine Rzepczyk discuss how such atypical antibody responses may in part explain why immunity to malaria has been widely perceived to be short-lived.A Ferrante and C.M Rzepczy

    GM-CSF-induced priming of human neutrophils for enhanced phagocytosis and killing of asexual blood stages of Plasmodium falciparum: synergistic effects of GM-CSF and TNF

    No full text
    Article first published online: 31 OCT 2003Granulocyte macrophage-colony stimulation factor (GM-CSF), which is a haematopoietic cytokine generated by activated T lymphocytes and macrophages during infection, was investigated for its effects on human neutrophil-mediated killing of asexual blood forms of Plasmodium falciparum. Pretreatment of neutrophils with human recombinant-GM-CSF markedly increased the parasite killing (measured by a radiometric assay), in the presence of normal serum (containing complement), immune serum (IS), purified IgG (from IS) or heat inactivated IS. GM-CSF pretreatment also enhanced phagocytosis of the parasite by neutrophils and the expression of CR3, FcγRII and FcγRIII receptors. Treatment of neutrophils with a combination of GM-CSF and TNF resulted in a synergistic increase in phagocytosis and killing of the parasite. The findings suggest that GM-CSF is likely to form part of the cytokine network responsible for regulating the antiparasitic activity of the neutrophil in malaria.Lakshmi M. Kumaratilake, Antonio Ferrante, Timothy Jaeger & Christine Rzepczy

    Synthetic peptide immunogens eliciting antibodies to Plasmodium falciparum sporozoite and merozoite surface antigens in H-2b and H-2k mice

    No full text
    Peptides representing conserved (MSA2/1A and MSA2/1B) and variant (MSA2/2, MSA2/6 and MSA2/7) regions of the merozoite surface Ag 2 (MSA2) of Plasmodium falciparum (FCQ-27/PNG isolate) were coupled to either peptide NP(NANP)5NA or peptide C(NANP)6 both of which contained the core sequence (NANP)n. The coupling was done via the N-terminus of one peptide and a cysteine residue on either terminus of the other. BL/10 (H-2b) and B10.BR (H-2k) mice were immunized with these MSA2- (NANP)n conjugates. The mice were also immunized with the unconjugated MSA2 peptides and with NP(NANP)5NA and C(NANP)6. Antibody responses were evaluated by 1) ELISA, in which the MSA2 peptides and C(NANP)6 were used as Ag; 2) immunofluorescence assays (IFAT) against intact sporozoites and merozoites; and 3) immunoblotting experiments against solubilized P. falciparum blood stage proteins. High titer antibodies to (NANP)n were elicited in both BL/10 and B10.BR mice after immunization with all the conjugates except MSA2/7-(NANP)n which gave only a very limited response in B10.BR mice. These antibodies recognized unfixed sporozoites. The conjugates also elicited antibodies to MSA2 as shown by ELISA, IFAT, and immunoblotting except for mice immunized with MSA2/1B-(NANP)n where an anti-MSA2 response was only detectable by immunoblotting. Immunization with unconjugated MSA2 peptides showed that MSA2/2 was immunogenic in both BL/10 and BR.10 mice, with MSA2/6 and MSA2/7 being immunogenic only in BL/10 mice. The antibodies elicited recognized both merozoites and the MSA2 protein. However, the antibody titers were lower overall than those seen when these peptides were used in the conjugated form. No anti-MSA2 antibodies were detected after immunization with MSA2/1A and MSA2/1B. Immunization of mice with the peptide NP(NANP)5NA produced antibodies in BL/10 (H-2b) mice only, and the immunogenicity of this preparation was poor. In contrast, C(NANP)6 produced a strong antibody response in both mouse strains. The antibodies elicited by NP(NANP)5NA and C(NANP)6 recognised sporozoites in IFAT. The MSA2 peptides studied (or their derivatives) were previously shown to be recognized by human T cells. Their immunogenic potential shows promise in that complex anti-P. falciparum responses can be elicited with simple synthetic immunogens based on these peptides

    Humoral immune responses of Solomon Islanders to the merozoite surface antigen 2 of Plasmodium falciparum show pronounced skewing towards antibodies of the immunoglobulin G3 subclass.

    Get PDF
    The immunoglobulin G (IgG) subclass distribution of antibodies to merozoite surface antigen 2 of Plasmodium falciparum in Solomon Islanders showed marked skewing towards the IgG3 subclass. This was not observed with crude P. falciparum schizont antigen. IgG3 responses may be short-lived and require repeated restimulation for their maintenance. This may be provided by persistent infection (premunition) or new infections
    • …
    corecore