10,257 research outputs found
Egyptian Agriculture in the 21st Century
In order to perform a proper, integrated assessment of potential climate change impacts on Egypt it was necessary to accurately identify important and impending issues and problems which are and will be facing the Egyptian agriculture sector into the next century. To this aim, two experts in the fields of Agronomy and Irrigated Agriculture in the Middle East were asked to travel to Egypt in order to assess the current state of Egyptian agriculture and pose possible questions and scenarios that will face Egypt in light of its current agricultural practices and management strategies. The paper examines two possible future scenarios for Egypt, one from a non-climate change perspective and the other from a climate change outlook. These scenarios are derived from the authors perspective of the current state of Egyptian agriculture. One viewpoint is that of the pessimist, where Egypt continues to practice poor agriculture management; the other is that of the optimist, with Egypt adopting sound management practices - adapting its cropping pattern and water use practices. Also addressed are the potential impacts of climate change on crop yields and recommendations for agronomic research to mitigate its potential impact
Global digital data sets of soil type, soil texture, surface slope and other properties: Documentation of archived data tape
The file structure and coding of four soils data sets derived from the Zobler (1986) world soil file is described. The data were digitized on a one-degree square grid. They are suitable for large-area studies such as climate research with general circulation models, as well as in forestry, agriculture, soils, and hydrology. The first file is a data set of codes for soil unit, land-ice, or water, for all the one-degree square cells on Earth. The second file is a data set of codes for texture, land-ice, or water, for the same soil units. The third file is a data set of codes for slope, land-ice, or water for the same units. The fourth file is the SOILWRLD data set, containing information on soil properties of land cells of both Matthews' and Food and Agriculture Organization (FAO) sources. The fourth file reconciles land-classification differences between the two and has missing data filled in
The Impacts of Climate Change, CO2, and SO2 on Agricultural Supply and Trade: An Integrated Assessment
The analysis of the impacts of alternative future energy paths on the regional supply and trade of agricultural commodities is part of an integrated assessment study undertaken a1 IIASA. For the agricultural study, results from the energy models (i.e., IIR and MESSAGE III) of IIASA's Environmentally Compatible Energy Strategies project and from the regional air pollution model RAINS developed by IIASA's Transboundary Air Pollution project were compiled to define the economic and environmental conditions for a number of simulation experiments with the BLS model.
This paper examines the impacts of climate change and altered concentrations of CO2 and SO2 in the atmosphere, on crop yields and regional food supply. Three different emission abatement scenarios are tested, representing a range of possible economic development and regulatory pathways.
Emission abatement, in terms of agricultural and environmental impacts, is a regional issue much more than a global one. While there is relatively little difference between outcomes at the global level, regional results vary greatly between scenarios
A 475 years-old founder effect involving IL12RB1: a highly prevalent mutation conferring Mendelian susceptibility to mycobacterial diseases in European descendants
Mutations in IFNGR1, IFNGR2, IL12RB1, IL12B, STAT1 and NEMO result in a common clinical phenotype known as Mendelian Susceptibility to Mycobacterial Diseases (MSMD). Interleukin-12 receptor 01 (IL12R beta 1) deficiency is the most common genetic etiology for MSMD. Known mutations affecting IL12RB1 are recessively inherited and are associated with null response to both IL-12 and IL-23. Mutation IL12RB1 1623_1624delinsTT was originally described in 5 families from European origin (2 from Germany: I from Cyprus, France and Belgium). Interestingly, this same mutation was found in an unexpectedly high prevalence among IL-12R beta 1 deficient patients in Argentina: 5-out-of-6 individuals born to unrelated families carried this particular change. To determine whether mutation 1623_1624delinsTT represents a DNA mutational hotspot or a founder effect, 34 polymorphic markers internal or proximal to IL12RB1 were studied in the Argentinean and the Belgian patients. A common haplotype spanning 1.45-3.51 Mb was shared by all chromosomes carrying mutation 1623_1624delinsTT, and was not detected on 100 control chromosomes. Applying a modified likelihood-based method the age of the most recent common ancestor carrying mutation 1623_1624delinsTT was estimated in 475 years (95% CI, 175-1275), which is the time when the Spaniards initiated the colonization of the Americas. Mutation 1623_1624delinsTT represents the first founder effect described on IL-12R beta 1, the most frequently affected gene in MSMD, and affecting patients with European ancestors. The reason(s) behind the persistency of this mutation across multiple generations, its relative high prevalence, and any potential selective advantage are yet to be established
Topological String Defect Formation During the Chiral Phase Transition
We extend and generalize the seminal work of Brandenberger, Huang and Zhang
on the formation of strings during chiral phase transitions(berger) and discuss
the formation of abelian and non-abelian topological strings during such
transitions in the early Universe and in the high energy heavy-ion collisions.
Chiral symmetry as well as deconfinement are restored in the core of these
defects. Formation of a dense network of string defects is likely to play an
important role in the dynamics following the chiral phase transition. We
speculate that such a network can give rise to non-azimuthal distribution of
transverse energy in heavy-ion collisions.Comment: 10 pages, 4 figures, minor correction
Wheat Yield Functions for Analysis of Land-Use Change in China
CERES-Wheat, a dynamic process crop growth model is specified and validated for eight sites in the major wheat-growing regions of China. Crop model results are then used to test functional forms for yield response to nitrogen fertilizer, irrigation water, temperature, and precipitation. The resulting functions are designed to be used in a linked biophysical-economic model of land-use and land-cover change. Variables explaining a significant proportion of simulated yield variance are nitrogen, irrigation water, and precipitation; temperature was not a significant component of yield variation within the range of observed year-to-year variability except at the warmest site. The Mitscherlich-Baule function is found to be more appropriate than the quadratic function at most sites. Crop model simulations with a generic soil with median characteristics of the eight sites were compared to simulations with site-specific soils, providing an initial test of the sensitivity of the functional forms to soil specification. The use of the generic soil does not affect the results significantly; thus, the functions may be considered representative of agriculturally productive regions with similar climate in China under intensifying management conditions
Climate Change Impacts on Agriculture: Challenges, Opportunities, and AgMIP Frameworks for Foresight
Agricultural systems are currently undergoing rapid shifts owing to socioeconomic development, technological change, population growth, economic opportunity, evolving demand for commodities, and the need for sustainability amid global environmental change. It is not sufficient to maintain current harvest levels; rather, there is a need to rapidly increase production in light of a population growing to nearly 10 billion by mid-century and to more than 11 billion by 2100 (FAO, 2016; UN, 2016; Popkin et al., 2012). Current and future agricultural systems are additionally burdened by human-caused climate change, the result of accumulating greenhouse gas and aerosol emissions, ecological destruction, and land use changes that have altered the chemical composition of Earths atmosphere and trapped energy in the Earth system (IPCC, 2013; Porter et al., 2014). This increased energy has already raised average surface temperatures by approximately 1 degree Centigrade (GISTEMP Team, 2017; Hansen et al., 2010), leading early on to the term global warming, but this phenomenon is now more accurately referred to as climate change because it also modifies atmospheric circulation, adjusts regional and seasonal precipitation patterns, and shifts the distribution and characteristics of extreme events (Bindoff et al., 2013; Collins et al., 2013). Food and health systems face increasing risk owing to progressive climate change now manifesting itself as more frequent, severe extreme weather eventsheat waves, droughts, and floods (IPCC, 2013). Often without warning, weather-related shocks can have catastrophic and reverberating impacts on the increasingly exposed global food systemthrough production, processing, distribution, retail, disposal, and waste. Simultaneously, malnutrition and ill health are arising from lack of access to nutritious food, exacerbated in crises such as food price spikes or shortages. For some countries, particularly import-dependent low-income countries, weather shocks and price spikes can lead to social unrest, famine, and migration
Observation of Plasma Focusing of a 28.5 GeV Positron Beam
The observation of plasma focusing of a 28.5 GeV positron beam is reported.
The plasma was formed by ionizing a nitrogen jet only 3 mm thick. Simultaneous
focusing in both transverse dimensions was observed with effective focusing
strengths of order Tesla per micron. The minimum area of the beam spot was
reduced by a factor of 2.0 +/- 0.3 by the plasma. The longitudinal beam
envelope was measured and compared with numerical calculations
- …
