312 research outputs found
Glass models on Bethe lattices
We consider ``lattice glass models'' in which each site can be occupied by at
most one particle, and any particle may have at most l occupied nearest
neighbors. Using the cavity method for locally tree-like lattices, we derive
the phase diagram, with a particular focus on the vitreous phase and the
highest packing limit. We also study the energy landscape via the
configurational entropy, and discuss different equilibrium glassy phases.
Finally, we show that a kinetic freezing, depending on the particular dynamical
rules chosen for the model, can prevent the equilibrium glass transitions.Comment: 24 pages, 11 figures; minor corrections + enlarged introduction and
conclusio
Exactly solvable models of adaptive networks
A satisfiability (SAT-UNSAT) transition takes place for many optimization
problems when the number of constraints, graphically represented by links
between variables nodes, is brought above some threshold. If the network of
constraints is allowed to adapt by redistributing its links, the SAT-UNSAT
transition may be delayed and preceded by an intermediate phase where the
structure self-organizes to satisfy the constraints. We present an analytic
approach, based on the recently introduced cavity method for large deviations,
which exactly describes the two phase transitions delimiting this adaptive
intermediate phase. We give explicit results for random bond models subject to
the connectivity or rigidity percolation transitions, and compare them with
numerical simulations.Comment: 4 pages, 4 figure
Landscape of solutions in constraint satisfaction problems
We present a theoretical framework for characterizing the geometrical
properties of the space of solutions in constraint satisfaction problems,
together with practical algorithms for studying this structure on particular
instances. We apply our method to the coloring problem, for which we obtain the
total number of solutions and analyze in detail the distribution of distances
between solutions.Comment: 4 pages, 4 figures. Replaced with published versio
Statistical mechanics of error exponents for error-correcting codes
Error exponents characterize the exponential decay, when increasing message
length, of the probability of error of many error-correcting codes. To tackle
the long standing problem of computing them exactly, we introduce a general,
thermodynamic, formalism that we illustrate with maximum-likelihood decoding of
low-density parity-check (LDPC) codes on the binary erasure channel (BEC) and
the binary symmetric channel (BSC). In this formalism, we apply the cavity
method for large deviations to derive expressions for both the average and
typical error exponents, which differ by the procedure used to select the codes
from specified ensembles. When decreasing the noise intensity, we find that two
phase transitions take place, at two different levels: a glass to ferromagnetic
transition in the space of codewords, and a paramagnetic to glass transition in
the space of codes.Comment: 32 pages, 13 figure
The cavity method for large deviations
A method is introduced for studying large deviations in the context of
statistical physics of disordered systems. The approach, based on an extension
of the cavity method to atypical realizations of the quenched disorder, allows
us to compute exponentially small probabilities (rate functions) over different
classes of random graphs. It is illustrated with two combinatorial optimization
problems, the vertex-cover and coloring problems, for which the presence of
replica symmetry breaking phases is taken into account. Applications include
the analysis of models on adaptive graph structures.Comment: 18 pages, 7 figure
Random multi-index matching problems
The multi-index matching problem (MIMP) generalizes the well known matching
problem by going from pairs to d-uplets. We use the cavity method from
statistical physics to analyze its properties when the costs of the d-uplets
are random. At low temperatures we find for d>2 a frozen glassy phase with
vanishing entropy. We also investigate some properties of small samples by
enumerating the lowest cost matchings to compare with our theoretical
predictions.Comment: 22 pages, 16 figure
Entropy landscape and non-Gibbs solutions in constraint satisfaction problems
We study the entropy landscape of solutions for the bicoloring problem in
random graphs, a representative difficult constraint satisfaction problem. Our
goal is to classify which type of clusters of solutions are addressed by
different algorithms. In the first part of the study we use the cavity method
to obtain the number of clusters with a given internal entropy and determine
the phase diagram of the problem, e.g. dynamical, rigidity and SAT-UNSAT
transitions. In the second part of the paper we analyze different algorithms
and locate their behavior in the entropy landscape of the problem. For instance
we show that a smoothed version of a decimation strategy based on Belief
Propagation is able to find solutions belonging to sub-dominant clusters even
beyond the so called rigidity transition where the thermodynamically relevant
clusters become frozen. These non-equilibrium solutions belong to the most
probable unfrozen clusters.Comment: 38 pages, 10 figure
An algorithm for counting circuits: application to real-world and random graphs
We introduce an algorithm which estimates the number of circuits in a graph
as a function of their length. This approach provides analytical results for
the typical entropy of circuits in sparse random graphs. When applied to
real-world networks, it allows to estimate exponentially large numbers of
circuits in polynomial time. We illustrate the method by studying a graph of
the Internet structure.Comment: 7 pages, 3 figures, minor corrections, accepted versio
The theoretical capacity of the Parity Source Coder
The Parity Source Coder is a protocol for data compression which is based on
a set of parity checks organized in a sparse random network. We consider here
the case of memoryless unbiased binary sources. We show that the theoretical
capacity saturate the Shannon limit at large K. We also find that the first
corrections to the leading behavior are exponentially small, so that the
behavior at finite K is very close to the optimal one.Comment: Added references, minor change
- …