1,929 research outputs found

    The systematic position of Plagiochila moritziana, P. trichostoma and P. deflexa based on ITS sequence variation of nuclear ribosomal DNA, morphology, and lipophilic secondary metabolites

    Get PDF
    According to phylogenetic analyses of nrDNA ITS1 and ITS2 sequences (including the 5.8S unit) the Neotropical Plagiochila moritziana, P. rutilans var. rutilans, P. rutilans var. standleyi, P. trichostoma (= P. permista, syn. nov.), and P. subtrinitensis form a monophyletic lineage and are placed in P. sect. Rutilantes; all five taxa lack a ca 20 base pair sequence that is present in all the taxa of the other Plagiochila sections investigated. The Central American P. subtrinitensis is treated as a synonym of the Hawaiian endemic P. deflexa. Plagiochila moritziana is excluded from sect. Fuscoluteae and reduced to a variety of P. rutilans; P. sect. Permistae is treated as a synonym of P. sect. Rutilantes. The sporophytes of P. trichostoma and P. deflexa are described for the first time. Fresh material of P. rutilans var. moritziana exhibits a distinct odor of peppermint caused by the presence of several menthane monoterpenoids, principally pulegone. The Central American P. rutilans var. standleyi is reported from Ecuador, new to South America. Lectotypes are designated for P. rutilans var. moritziana, P. subtrinitensis, and P. trichostoma

    Modeling of the electronic state of the High-Temperature Superconductor LaCuO: Phonon dynamics and charge response

    Full text link
    A modeling of the normal state of the p-doped high-temperature superconductors (HTSC's) is presented. This is achieved starting from a more conventional metallic phase for optimal- and overdoping and passing via the underdoped to the insulating state by consecutive orbital selective compressibility-incompressibility transitions in terms of sum rules for the charge response. The modeling is substantiated by corresponding phonon calculations. Extending investigations of the full dispersion and in particular of the strongly doping dependent anomalous phonon modes in LaCuO, which so far underpin our treatment of the density response of the electrons in the p-doped HTSC's, gives additional support for the modeling of the electronic state, compares well with recent experimental data and predicts the dispersion for the overdoped regime. Moreover, phonon densities of states have been calculated and compared for the insulating, underdoped, optimally doped and overdoped state of LaCuO. From our modeling of the normal state a consistent picture of the superconducting phase also can be extracted qualitatively pointing in the underdoped regime to a phase ordering transition. On the other hand, the modeling of the optimal and overdoped state is consistent with a quasi-particle picture with a well defined Fermi surface. Thus, in the latter case a Fermi surface instability with an evolution of pairs of well defined quasiparticles is possible and can lead to a BCS-type ordering. So, it is tempting to speculate that optimal TCT_C in the HTSC's marks a crossover region between these two forms of ordering.Comment: 18 RevTex pages, 10 figures, revised version, references updated, accepted for publication in Physical Review

    High frequency longitudinal and transverse dynamics in water

    Full text link
    High-resolution, inelastic x-ray scattering measurements of the dynamic structure factor S(Q,\omega) of liquid water have been performed for wave vectors Q between 4 and 30 nm^-1 in distinctly different thermodynamic conditions (T= 263 - 420 K ; at, or close to, ambient pressure and at P = 2 kbar). In agreement with previous inelastic x-ray and neutron studies, the presence of two inelastic contributions (one dispersing with Q and the other almost non-dispersive) is confirmed. The study of their temperature- and Q-dependence provides strong support for a dynamics of liquid water controlled by the structural relaxation process. A viscoelastic analysis of the Q-dispersing mode, associated with the longitudinal dynamics, reveals that the sound velocity undergoes the complete transition from the adiabatic sound velocity (c_0) (viscous limit) to the infinite frequency sound velocity (c_\infinity) (elastic limit). On decreasing Q, as the transition regime is approached from the elastic side, we observe a decrease of the intensity of the second, weakly dispersing feature, which completely disappears when the viscous regime is reached. These findings unambiguously identify the second excitation to be a signature of the transverse dynamics with a longitudinal symmetry component, which becomes visible in the S(Q,\omega) as soon as the purely viscous regime is left.Comment: 28 pages, 12 figure

    Lattice dynamics and electron-phonon coupling in transition metal diborides

    Full text link
    The phonon density-of-states of transition metal diborides TMB2 with TM = Ti, V, Ta, Nb and Y has been measured using the technique of inelastic neutron scattering. The experimental data are compared with ab initio density functional calculations whereby an excellent agreement is registered. The calculations thus can be used to obtain electron-phonon spectral functions within the isotropic limit. A comparison to similar data for MgB2 and AlB2 which were subject of prior publications as well as parameters important for the superconducting properties are part of the discussion.Comment: 4 pages, 3 figure

    Effects of Al doping on the structural and electronic properties of Mg(1-x)Al(x)B2

    Full text link
    We have studied the structural and electronic properties of Mg(1-x)Al(x)B2 within the Virtual Crystal Approximation (VCA) by means of first-principles total-energy calculations. Results for the lattice parameters, the electronic band structure, and the Fermi surface as a function of Al doping for 0<x<0.6 are presented. The ab initio VCA calculations are in excellent agreement with the experimentally observed change in the lattice parameters of Al doped MgB2. The calculations show that the Fermi surface associated with holes a the boron planes collapses gradually with aluminum doping and vanishes for x=0.56. In addition, an abrupt topological change in the sigma-band Fermi surface was found for x=0.3. The calculated hole density correlates closely with existing experimental data for Tc(x), indicating that the observed loss of superconductivity in Mg(1-x)Al(x)B2 is a result of hole bands filling.Comment: 4 pages (revtex) and 4 figures (postscript

    Revealing natural relationships among arbuscular mycorrhizal fungi: culture line BEG47 represents Diversispora epigaea, not Glomus versiforme

    Get PDF
    Background: Understanding the mechanisms underlying biological phenomena, such as evolutionarily conservative trait inheritance, is predicated on knowledge of the natural relationships among organisms. However, despite their enormous ecological significance, many of the ubiquitous soil inhabiting and plant symbiotic arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are incorrectly classified. Methodology/Principal Findings: Here, we focused on a frequently used model AMF registered as culture BEG47. This fungus is a descendent of the ex-type culture-lineage of Glomus epigaeum, which in 1983 was synonymised with Glomus versiforme. It has since then been used as ‘G. versiforme BEG47’. We show by morphological comparisons, based on type material, collected 1860–61, of G. versiforme and on type material and living ex-type cultures of G. epigaeum, that these two AMF species cannot be conspecific, and by molecular phylogenetics that BEG47 is a member of the genus Diversispora. Conclusions: This study highlights that experimental works published during the last >25 years on an AMF named ‘G. versiforme’ or ‘BEG47’ refer to D. epigaea, a species that is actually evolutionarily separated by hundreds of millions of years from all members of the genera in the Glomerales and thus from most other commonly used AMF ‘laboratory strains’. Detailed redescriptions substantiate the renaming of G. epigaeum (BEG47) as D. epigaea, positioning it systematically in the order Diversisporales, thus enabling an evolutionary understanding of genetical, physiological, and ecological traits, relative to those of other AMF. Diversispora epigaea is widely cultured as a laboratory strain of AMF, whereas G. versiforme appears not to have been cultured nor found in the field since its original description

    A Current Mode Detector Array for Gamma-Ray Asymmetry Measurements

    Full text link
    We have built a CsI(Tl) gamma-ray detector array for the NPDGamma experiment to search for a small parity-violating directional asymmetry in the angular distribution of 2.2 MeV gamma-rays from the capture of polarized cold neutrons by protons with a sensitivity of several ppb. The weak pion-nucleon coupling constant can be determined from this asymmetry. The small size of the asymmetry requires a high cold neutron flux, control of systematic errors at the ppb level, and the use of current mode gamma-ray detection with vacuum photo diodes and low-noise solid-state preamplifiers. The average detector photoelectron yield was determined to be 1300 photoelectrons per MeV. The RMS width seen in the measurement is therefore dominated by the fluctuations in the number of gamma rays absorbed in the detector (counting statistics) rather than the intrinsic detector noise. The detectors were tested for noise performance, sensitivity to magnetic fields, pedestal stability and cosmic background. False asymmetries due to gain changes and electronic pickup in the detector system were measured to be consistent with zero to an accuracy of 10910^{-9} in a few hours. We report on the design, operating criteria, and the results of measurements performed to test the detector array.Comment: 33 pages, 20 figures, 2 table

    ROTATIONAL-DYNAMICS OF SOLID C-70 - A NEUTRON-SCATTERING STUDY

    Get PDF
    PMID: 10011126PMID: 10011126 This work at the University of Sussex at supported by the Science and Engineering Research Council, U.K.PMID: 10011126 This work at the University of Sussex at supported by the Science and Engineering Research Council, U.K.PMID: 10011126 This work at the University of Sussex at supported by the Science and Engineering Research Council, U.K.We report the results of neutron-diffraction and low-energy neutron-inelastic-scattering experiments on high-purity solid C-70 between 10 and 640 K. Thermal hysteresis effects are found to accompany structural changes both on cooling and on heating. The observed diffuse scattering intensity does not change with temperature. At 10 K broad librational peaks are observed at 1.82(16) meV [full width at half maximum=1.8(5) meV]. The peaks soften and broaden further with increasing temperature. At and above room temperature, they collapse into a single quasielastic line. At 300 K, the diffusive reorientational motion appears to be somewhat anisotropic, becoming less so with increasing temperature. An isotropic rotational diffusion model, in which the motions of adjacent molecules are uncorrelated, describes well the results at 525 K. The temperature dependence of the rotational diffusion constants is consistent with a thermally activated process having an activation energy of 32(7) meV.This work at the University of Sussex at supported by the Science and Engineering Research Council, U.K

    High Precision Axial Coordinate Readout for an Axial 3-D PET Detector Module using a Wave Length Shifter Strip Matrix

    Get PDF
    We describe a novel method to extract the axial coordinate from a matrix of long axially oriented crystals, which is based on wavelength shifting plastic strips. The method allows building compact 3-D axial gamma detector modules for PET scanners with excellent 3-dimensional spatial, timing and energy resolution while keeping the number of readout channels reasonably low. A voxel resolution of about 10 mm3 is expected. We assess the performance of the method in two independent ways, using classical PMTs and G-APDs to read out the LYSO (LSO) scintillation crystals and the wavelength shifting strips. We observe yields in excess of 35 photoelectrons from the strips for a 511 keV gamma and reconstruct the axial coordinate with a precision of about 2.5 mm (FWHM)

    Far-infrared vibrational properties of linear C60 polymers: A comparison between neutral and charged materials

    Get PDF
    We report the far-infrared transmittance spectrum of a pure phase of the orthorhombic high-temperature and high-pressure C-60 polymer and compare the results with a previously published spectrum of the charged RbC60 orthorhombic polymer. Assignments for both spectra are made with the aid of first-principles quantum molecular dynamics simulations of the two materials. We find that the striking spectral differences between the neutral and charged linear fullerene polymers can be fully accounted for by charge effects on the C-60 ball
    corecore