2,094 research outputs found

    On the nature of Thermal Diffusion in binary Lennard-Jones liquids

    Full text link
    The aim of this study is to understand deeper the thermal diffusion transport process (Ludwig-Soret effect) at the microscopic level. For that purpose, the recently developed reverse nonequilibrium molecular dynamics method was used to calculate Soret coefficients of various systems in a systematic fashion. We studied binary Lennard-Jones (LJ) fluids near the triple point (of one of the components) in which we separately changed the ratio of one of the LJ parameters mass, atomic diameter and interaction strength while keeping all other parameters fixed and identical. We observed that the magnitude of the Soret coefficient depends on all three ratios. Concerning its sign we found that heavier species, smaller species and species with higher interaction strengths tend to accumulate in the cold region whereas the other ones (lighter, bigger or weaker bound) migrate to the hot region of our simulation cell. Additionally, the superposition of the influence of the various parameters was investigated as well as more realistic mixtures. We found that in the experimentally relevant parameter range the contributions are nearly additive and that the mass ratio often is the dominating factor.Comment: 27 pages, 9 figures, submitted to J. Chem. Phy

    Room temperature electron spin relaxation in GaInNAs multiple quantum wells at 1.3 mu m

    Get PDF
    The authors report a direct measurement of electron spin relaxation in GaInNAs semiconductor multiple quantum wells at room temperature. Multiple quantum wells of widths 5.8, 7, and 8 nm exhibiting excitonic absorption around 1.3 mu m have been studied. Spin relaxation times were found to increase with well width in the range of 77-133 ps. The spin relaxation time dependence on first electron confinement energy suggests the Elliot-Yafet mechanism [A. Tackeuchi , Physica B 272, 318 (1999)] as the dominant relaxation process. (c) 2006 American Institute of Physics.</p

    First-principles modeling of temperature and concentration dependent solubility in the phase separating Fex_xCu1x_{1-x} alloy system

    Full text link
    We present a novel cluster-expansion (CE) approach for the first-principles modeling of temperature and concentration dependent alloy properties. While the standard CE method includes temperature effects only via the configurational entropy in Monte Carlo simulations, our strategy also covers the first-principles free energies of lattice vibrations. To this end, the effective cluster interactions of the CE have been rendered genuinely temperature dependent, so that they can include the vibrational free energies of the input structures. As a model system we use the phase-separating alloy Fe-Cu with our focus on the Fe-rich side. There, the solubility is derived from Monte Carlo simulations, whose precision had to be increased by averaging multiple CEs. We show that including the vibrational free energy is absolutely vital for the correct first-principles prediction of Cu solubility in the bcc Fe matrix: The solubility tremendously increases and is now in quantitative agreement with experimental findings

    A study on the false positive rate of Stegdetect

    Get PDF
    In this paper we analyse Stegdetect, one of the well-known image steganalysis tools, to study its false positive rate. In doing so, we process more than 40,000 images randomly downloaded from the Internet using Google images, together with 25,000 images from the ASIRRA (Animal Species Image Recognition for Restricting Access) public corpus. The aim of this study is to help digital forensic analysts, aiming to study a large number of image files during an investigation, to better understand the capabilities and the limitations of steganalysis tools like Stegdetect. The results obtained show that the rate of false positives generated by Stegdetect depends highly on the chosen sensitivity value, and it is generally quite high. This should support the forensic expert to have better interpretation in their results, and taking the false positive rates into consideration. Additionally, we have provided a detailed statistical analysis for the obtained results to study the difference in detection between selected groups, close groups and different groups of images. This method can be applied to any steganalysis tool, which gives the analyst a better understanding of the detection results, especially when he has no prior information about the false positive rate of the tool

    Analysing Magnetism Using Scanning SQUID Microscopy

    Get PDF
    Scanning superconducting quantum interference device microscopy (SSM) is a scanning probe technique that images local magnetic flux, which allows for mapping of magnetic fields with high field and spatial accuracy. Many studies involving SSM have been published in the last decades, using SSM to make qualitative statements about magnetism. However, quantitative analysis using SSM has received less attention. In this work, we discuss several aspects of interpreting SSM images and methods to improve quantitative analysis. First, we analyse the spatial resolution and how it depends on several factors. Second, we discuss the analysis of SSM scans and the information obtained from the SSM data. Using simulations, we show how signals evolve as a function of changing scan height, SQUID loop size, magnetization strength and orientation. We also investigated 2-dimensional autocorrelation analysis to extract information about the size, shape and symmetry of magnetic features. Finally, we provide an outlook on possible future applications and improvements.Comment: 16 pages, 10 figure

    On the edge of a new frontier: Is gerontological social work in the UK ready to meet twenty-first-century challenges?

    Get PDF
    This article is available open access through the publisher’s website. Copyright @ 2013 The Authors.This article explores the readiness of gerontological social work in the UK for meeting the challenges of an ageing society by investigating the focus on work with older people in social work education and the scope of gerontological social work research. The discussion draws on findings from two exploratory studies: a survey of qualifying master's programmes in England and a survey of the content relating to older people over a six-year period in four leading UK social work journals. The evidence from master's programmes suggests widespread neglect of ageing in teaching content and practice learning. Social work journals present a more nuanced picture. Older people emerge within coverage of generic policy issues for adults, such as personalisation and safeguarding, and there is good evidence of the complexity of need in late life. However, there is little attention to effective social work interventions, with an increasingly diverse older population, or to the quality of gerontological social work education. The case is made for infusing content on older people throughout the social work curriculum, for extending practice learning opportunities in social work with older people and for increasing the volume and reporting of gerontological social work research.Brunel Institute for Ageing Studie

    Using force covariance to derive effective stochastic interactions in dissipative particle dynamics

    Full text link
    There exist methods for determining effective conservative interactions in coarse grained particle based mesoscopic simulations. The resulting models can be used to capture thermal equilibrium behavior, but in the model system we study do not correctly represent transport properties. In this article we suggest the use of force covariance to determine the full functional form of dissipative and stochastic interactions. We show that a combination of the radial distribution function and a force covariance function can be used to determine all interactions in dissipative particle dynamics. Furthermore we use the method to test if the effective interactions in dissipative particle dynamics (DPD) can be adjusted to produce a force covariance consistent with a projection of a microscopic Lennard-Jones simulation. The results indicate that the DPD ansatz may not be consistent with the underlying microscopic dynamics. We discuss how this result relates to theoretical studies reported in the literature.Comment: 10 pages, 10 figure

    Problem gambling: a suitable case for social work?

    Get PDF
    Problem gambling attracts little attention from health and social care agencies in the UK. Prevalence surveys suggest that 0.6% of the population are problem gamblers and it is suggested that for each of these individuals, 10–17 other people, including children and other family members, are affected. Problem gambling is linked to many individual and social problems including: depression, suicide, significant debt, bankruptcy, family conflict, domestic violence, neglect and maltreatment of children and offending. This makes the issue central to social work territory. Yet, the training of social workers in the UK has consistently neglected issues of addictive behaviour. Whilst some attention has been paid in recent years to substance abuse issues, there has remained a silence in relation to gambling problems. Social workers provide more help for problems relating to addictions than other helping professions. There is good evidence that treatment, and early intervention for gambling problems, including psycho-social and public health approaches, can be very effective. This paper argues that problem gambling should be moved onto the radar of the social work profession, via inclusion on qualifying and post-qualifying training programmes and via research and dissemination of good practice via institutions such as the Social Care Institute for Excellence (SCIE). Keywords: problem gambling; addictive behaviour; socia

    Merging fragments of classical logic

    Full text link
    We investigate the possibility of extending the non-functionally complete logic of a collection of Boolean connectives by the addition of further Boolean connectives that make the resulting set of connectives functionally complete. More precisely, we will be interested in checking whether an axiomatization for Classical Propositional Logic may be produced by merging Hilbert-style calculi for two disjoint incomplete fragments of it. We will prove that the answer to that problem is a negative one, unless one of the components includes only top-like connectives.Comment: submitted to FroCoS 201

    Proteomic responses to gold(III)-toxicity in the bacterium Cupriavidus metallidurans CH34

    Get PDF
    Accepted 11th October 2016The metal-resistant β-proteobacterium Cupriavidus metallidurans drives gold (Au) biomineralisation and the (trans)formation of Au nuggets largely via unknown biochemical processes, ultimately leading to the reductive precipitation of mobile, toxic Au(i/iii)-complexes. In this study proteomic responses of C. metallidurans CH34 to mobile, toxic Au(iii)-chloride are investigated. Cells were grown in the presence of 10 and 50 μM Au(iii)-chloride, 50 μM Cu(ii)-chloride and without additional metals. Differentially expressed proteins were detected by difference gel electrophoresis and identified by liquid chromatography coupled mass spectrometry. Proteins that were more abundant in the presence of Au(iii)-chloride are involved in a range of important cellular functions, e.g., metabolic activities, transcriptional regulation, efflux and metal transport. To identify Au-binding proteins, protein extracts were separated by native 2D gel electrophoresis and Au in protein spots was detected by laser absorption inductively coupled plasma mass spectrometry. A chaperon protein commonly understood to bind copper (Cu), CupC, was identified and shown to bind Au. This indicates that it forms part of a multi-metal detoxification system and suggests that similar/shared detoxification pathways for Au and Cu exist. Overall, this means that C. metallidurans CH34 is able to mollify the toxic effects of cytoplasmic Au(iii) by sequestering this Au-species. This effect may in the future be used to develop CupC-based biosensing capabilities for the in-field detection of Au in exploration samples.Carla M. Zammit, Florian Weiland, Joël Brugger, Benjamin Wade, Lyron Juan Winderbaum, Dietrich H. Nies, Gordon Southam, Peter Hoffmann and Frank Reit
    corecore