12 research outputs found

    Neuropathic pain induced alterations in the opioidergic modulation of a descending pain facilitatory area of the brain

    Get PDF
    Opioids play a major role at descending pain modulation but the effects of neuropathic pain on the brain opioidergic system remain understudied. Since descending facilitation is enhanced during neuropathic pain, we studied the opioidergic modulation of the dorsal reticular nucleus (DRt), a medullary pain facilitatory area, in the spared nerve injury (SNI) model of neuropathic pain. We first performed a series of behavioral experiments in naïve-animals to establish the role of µ-opioid receptor (MOR) in the effects of endogenous and exogenous opioids at the DRt. Specifically, we showed that lentiviral-mediated MOR-knockdown at the DRt increased sensitivity to thermal and mechanical stimuli while the MOR agonist DAMGO induced the opposite effects. Additionally, we showed that MOR-knockdown and the pharmacological blockade of MOR by CTAP at the DRt decreased and inhibited, respectively, the analgesic effects of systemic morphine. Then, we performed in vivo microdialysis to measure enkephalin peptides in the DRt and evaluated MOR expression in the DRt at mRNA, protein and phosphorylated form levels by quantitative real-time PCR and immunohistochemistry, respectively. SNI-animals, compared to sham control, showed higher levels of enkephalin peptides, lower MOR-labeled cells without alterations in MOR mRNA levels, and higher phosphorylated MOR-labeled cells. Finally, we performed behavioral studies in SNI animals to determine the potency of systemic morphine and the effects of the pharmacologic and genetic manipulation of MOR at the DRt. We showed a reduced potency of the antiallodynic effects of systemic morphine in SNI-animals compared to the antinociceptive effects in sham animals. Increasing MOR-cells at the DRt of SNI-animals by lentiviral-mediated MOR-overexpression produced no effects on mechanical allodynia. DAMGO induced anti-allodynia only after MOR-overexpression. These results show that MOR inhibits DRt pain facilitatory actions and that this action contributes to the analgesic effects of systemic opioids. We further show that the inhibitory function of MOR is impaired during neuropathic pain. This is likely due to desensitization and degradation of MOR which are adaptations of the receptor that can be triggered by MOR phosphorylation. Skipping counter-regulatory pathways involved in MOR adaptations might restore the opioidergic inhibition at pain facilitatory areas.This work was supported by the FCT (PTCD/SAU-NSC/110954/2009 FEDER/COMPETE) and ESF (NORTE-08-5369-FSE-000026)

    Tlx3 exerts direct control in specifying excitatory over inhibitory neurons in the dorsal spinal cord

    Get PDF
    © 2021 Monteiro, Miranda, Samina, Dias, Raposo, Oliveira, Reguenga, Castro and Lima. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.The spinal cord dorsal horn is a major station for integration and relay of somatosensory information and comprises both excitatory and inhibitory neuronal populations. The homeobox gene Tlx3 acts as a selector gene to control the development of late-born excitatory (dILB) neurons by specifying glutamatergic transmitter fate in dorsal spinal cord. However, since Tlx3 direct transcriptional targets remain largely unknown, it remains to be uncovered how Tlx3 functions to promote excitatory cell fate. Here we combined a genomics approach based on chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) and expression profiling, with validation experiments in Tlx3 null embryos, to characterize the transcriptional program of Tlx3 in mouse embryonic dorsal spinal cord. We found most dILB neuron specific genes previously identified to be directly activated by Tlx3. Surprisingly, we found Tlx3 also directly represses many genes associated with the alternative inhibitory dILA neuronal fate. In both cases, direct targets include transcription factors and terminal differentiation genes, showing that Tlx3 directly controls cell identity at distinct levels. Our findings provide a molecular frame for the master regulatory role of Tlx3 in developing glutamatergic dILB neurons. In addition, they suggest a novel function for Tlx3 as direct repressor of GABAergic dILA identity, pointing to how generation of the two alternative cell fates being tightly coupled.This work is a result of the project Norte-01-0145-FEDER-000008 – Porto Neurosciences and Neurologic Disease Research Initiative at I3S, supported by Norte Portugal Regional Operational Program (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). This work was also supported by FCT – Fundação para a Ciência e Tecnologia (Grants PTDC/SAU-OBD/099886/2008 to DL and PTDC/NEU-NMC/0315/2012 to DC) and Universidade do Porto/Banco Santander Totta (Projetos Pluridisciplinares to FM). We acknowledge the support of POCI-01-0145-FEDER-022122, granted to i3S Scientific Platform Advanced Light Microscopy, member of the national infrastructure PPBI-Portuguese Platform of BioImaging.info:eu-repo/semantics/publishedVersio

    Selective detection of UCP 3 expression in skeletal muscle: effect of thyroid status and temperature acclimation

    Get PDF
    AbstractA novel peptide antibody to UCP 3 is characterized which is sensitive and discriminatory for UCP 3 over UCP 2, UCP 1 and other mitochondrial transporters. The peptide antibody detects UCP 3 expression in E. coli, COS cells and yeast expression systems. The peptide antibody detects a single ∼33 kDa protein band in mitochondria from isolated rat skeletal muscle, mouse and rat brown adipose tissue, and in whole muscle groups (soleus and extensor digitorum longus) from mice. No 33 kDa band is detectable in isolated mitochondria from liver, heart, brain, kidney and lungs of rats, or gastrocnemius mitochondria from UCP 3 knock-out mice. From our data, we conclude that the peptide antibody is detecting UCP 3 in skeletal muscle, skeletal muscle mitochondria and brown adipose tissue mitochondria. It is also noteworthy that the peptide antibody can detect human, mouse and rat forms of UCP 3. Using the UCP 3 peptide antibody, we confirm and quantify the increased (2.8-fold) UCP 3 expression observed in skeletal muscle mitochondria isolated from 48-h-starved rats. We show that UCP 3 expression is increased (1.6-fold) in skeletal muscle of rats acclimated over 8 weeks to 8 °C and that UCP 3 expression is decreased (1.4-fold) in rats acclimated to 30 °C. Furthermore, UCP 3 expression is increased (2.3-fold) in skeletal muscle from hyperthyroid rats compared to euthyroid controls. In addition, we show that UCP 3 expression is only coincident with the mitochondrial fraction of skeletal muscle homogenates and not peroxisomal, nuclear or cytosolic and microsomal fractions

    Novel mutations in the PEX2 gene of four unrelated patients with a peroxisome biogenesis disorder

    No full text
    The peroxisome biogenesis disorders (PBDs) form a genetically and clinically heterogeneous group of disorders due to defects in at least 11 distinct genes. The prototype of this group of disorders is Zellweger syndrome (ZS) with neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease (IRD) as milder variants. Common to PBDs are liver disease, variable neurodevelopmental delay, retinopathy and perceptive deafness. PBD patients belonging to complementation group 10 (CG10) have mutations in the PEX2 gene (PXMP3), which codes for a protein (PEX2) that contains two transmembrane domains and a zinc-binding domain considered to be important for its interaction with other proteins of the peroxisomal protein import machinery. We report on the identification of four PBD patients belonging to CG10. Sequence analysis of their PEX2 genes revealed 4 different mutations, 3 of which have not been reported before. Two of the patients had homozygous mutations leading to truncated proteins lacking both transmembrane domains and the zinc-binding domain. These mutations correlated well with their severe phenotypes. The third patient had a homozygous mutation leading to the absence of the zinc-binding domain (W223X) and the fourth patient had a homozygous mutation leading to the change of the second cysteine residue of the zinc-binding domain (C247R). Surprisingly, the patient lacking the domain had a mild phenotype, whereas the C247R patient had a severe phenotype. This might be due to an increased instability of PEX2 due to the R for C substitution or to a dominant negative effect on interacting protein

    Global Organization and Function of Mammalian Cytosolic Proteasome Pools: Implications for PA28 and 19S Regulatory Complexes

    No full text
    Proteolytic activity of the 20S proteasome is regulated by activators that govern substrate movement into and out of the catalytic chamber. However, the physiological relationship between activators, and hence the relative role of different proteasome species, remains poorly understood. To address this problem, we characterized the total pool of cytosolic proteasomes in intact and functional form using a single-step method that bypasses the need for antibodies, proteasome modification, or column purification. Two-dimensional Blue Native(BN)/SDS-PAGE and tandem mass spectrometry simultaneously identified six native proteasome populations in untreated cytosol: 20S, singly and doubly PA28-capped, singly 19S-capped, hybrid, and doubly 19S-capped proteasomes. All proteasome species were highly dynamic as evidenced by recruitment and exchange of regulatory caps. In particular, proteasome inhibition with MG132 markedly stimulated PA28 binding to exposed 20S α-subunits and generated doubly PA28-capped and hybrid proteasomes. PA28 recruitment virtually eliminated free 20S particles and was blocked by ATP depletion. Moreover, inhibited proteasomes remained stably associated with distinct cohorts of partially degraded fragments derived from cytosolic and ER substrates. These data establish a versatile platform for analyzing substrate-specific proteasome function and indicate that PA28 and 19S activators cooperatively regulate global protein turnover while functioning at different stages of the degradation cycle
    corecore