36,312 research outputs found

    Device and method for frictionally testing materials for ignitability

    Get PDF
    Test apparatus for determining ignition characteristics of various metal in oxidizer environments simulating operating conditions for materials is invented. The test apparatus has a chamber through which the oxidizing agent flows, and means for mounting a stationary test sample therein, a powered, rotating shaft in the chamber rigidly mounts a second test sample. The shaft is axially movable to bring the samples into frictional engagement and heated to the ignition point. Instrumentation connected to the apparatus provides for observation of temperatures, pressures, loads on and speeds of the rotating shaft, and torques whereby components of stressed oxygen systems can be selected which will avoid accidental fires under working conditions

    Turbofan blade stresses induced by the flow distortion of a VTOL inlet at high angles of attack

    Get PDF
    A 51-cm-diameter turbofan with a tilt-nacelle VTOL inlet was tested in the Lewis Research Center's 9- by 15-Ft Low Speed Wind Tunnel at velocities up to 72 m/s and angles of attack up to 120 deg. Fan-blade vibratory stress levels were investigated over a full aircraft operating range. These stresses were due to inlet air flow distortion resulting from (1) internal flow separation in the inlet, and (2) ingestion of the exterior nacelle wake. Stress levels are presented, along with an estimated safe operating envelope, based on infinite blade fatigue life

    VSTOL tilt nacelle aerodynamics and its relation to fan blade stresses

    Get PDF
    A scale model of a VSTOL tilt nacelle with a 0.508 m single stage fan was tested in a low speed wind tunnel to ascertain inlet aerodynamic and fan aeromechanical performance over the low speed flight envelope. Fan blade stress maxima occurred at discrete rotational speeds corresponding to integral engine order vibrations of the first flatwise bending mode. Increased fan blade stress levels coincided with internal boundary layer separation but became severe only when the separation location had progressed to the entry lip region of the inlet

    Behavior of the Dripping Faucet over a Wide Range of the Flow Rate

    Full text link
    The time interval of successive water-drips from a faucet was examined over a wide range of the flow rate. The dripping interval alternately exhibits a stable state and a chaotic state as the flow rate increases. In the stable state, the volume of the drip is kept constant at fixed flow rates, and the constant volume increases with the flow rate. In the chaotic state, in addition to a mechanics that the drip is torn by its own weight, the vibration of the drip on the faucet takes part in the strange behavior of the interval.Comment: 7 pages, 7 figures, to be published in J. Phys. Soc. Jpn vol 68-2(1999

    Near-infrared counterparts of three transient very faint neutron star X-ray binaries

    Full text link
    We present near-infrared (NIR) imaging observations of three transient neutron star X-ray binaries, SAX J1753.5-2349, SAX J1806.5-2215 and AX J1754.2-2754. All three sources are members of the class of `very faint' X-ray transients which exhibit X-ray luminosities LX≲1036L_X\lesssim10^{36} erg s−1^{-1}. The nature of this class of sources is still poorly understood. We detect NIR counterparts for all three systems and perform multi-band photometry for both SAX J1753.5-2349 and SAX J1806.5-2215, including narrow-band Brγ_{\gamma} photometry for SAX J1806.5-2215. We find that SAX J1753.5-2349 is significantly redder than the field population, indicating that there may be absorption intrinsic to the system, or perhaps a jet is contributing to the infrared emission. SAX J1806.5-2215 appears to exhibit absorption in Brγ_{\gamma}, providing evidence for hydrogen in the system. Our observations of AX J1754.2--2754 represent the first detection of a NIR counterpart for this system. We find that none of the measured magnitudes are consistent with the expected quiescent magnitudes of these systems. Assuming that the infrared radiation is dominated by either the disc or the companion star, the observed magnitudes argue against an ultracompact nature for all three systems.Comment: 10 pages, 10 figures, accepted for publication in MNRA

    Merged ionization/dissociation fronts in planetary nebulae

    Get PDF
    The hydrogen ionization and dissociation front around an ultraviolet radiation source should merge when the ratio of ionizing photon flux to gas density is sufficiently low and the spectrum is sufficiently hard. This regime is particularly relevant to the molecular knots that are commonly found in evolved planetary nebulae, such as the Helix Nebula, where traditional models of photodissociation regions have proved unable to explain the high observed luminosity in H_2 lines. In this paper we present results for the structure and steady-state dynamics of such advection-dominated merged fronts, calculated using the Cloudy plasma/molecular physics code. We find that the principal destruction processes for H_2 are photoionization by extreme ultraviolet radiation and charge exchange reactions with protons, both of which form H_2^+, which rapidly combines with free electrons to undergo dissociative recombination. Advection moves the dissociation front to lower column densities than in the static case, which vastly increases the heating in the partially molecular gas due to photoionization of He^0, H_2, and H^0. This causes a significant fraction of the incident bolometric flux to be re-radiated as thermally excited infrared H_2 lines, with the lower excitation pure rotational lines arising in 1000 K gas and higher excitation H_2 lines arising in 2000 K gas, as is required to explain the H_2 spectrum of the Helix cometary knots.Comment: 4 pages, accepted by ApJL, scheduled December 20 issu

    Cumulative luminosity functions of the X-ray point source population in M31

    Full text link
    We present preliminary results from a detailed analysis of the X-ray point sources in the XMM-Newton survey of M31. These sources are expected to be mostly X-ray binaries. We have so far studied 225 of the 535 sources found by automated source detection. Only sources which were present in all three EPIC images were considered. X-ray binaries are identified by their energy spectrum and power density spectrum. Unlike in other surveys we have obtained source luminosities from freely fit emission models. We present uncorrected luminosity functions of the sources analysed so far.Comment: 2 pages, 1 figure. To appear in proceedings of IAUS23
    • …
    corecore