572 research outputs found

    Leptoquarks decaying to a top quark and a charged lepton at hadron colliders

    Full text link
    We study the sensitivity of the Tevatron and the 7 TeV LHC to a leptoquark S coupling to a top quark and a charged lepton L (= e, mu, or tau). For the Tevatron, we focus on the case m_S < m_t, where the leptoquark pair production cross section is large, and the decay is three-body: S --> W b L^{\pm}. We argue that existing Tevatron observations could exclude m_S \lsim 160 GeV. For m_S > m_t, we show that the LHC experiments with low integrated luminosity could be sensitive to such leptoquarks decaying to tl^{\pm} with l= mu or tau.Comment: 13 pages, 6 figures, minor changes (typos

    Non-sequential triple ionization in strong fields

    Get PDF
    We consider the final stage of triple ionization of atoms in a strong linearly polarized laser field. We propose that for intensities below the saturation value for triple ionization the process is dominated by the simultaneous escape of three electrons from a highly excited intermediate complex. We identify within a classical model two pathways to triple ionization, one with a triangular configuration of electrons and one with a more linear one. Both are saddles in phase space. A stability analysis indicates that the triangular configuration has the larger cross sections and should be the dominant one. Trajectory simulations within the dominant symmetry subspace reproduce the experimentally observed distribution of ion momenta parallel to the polarization axis.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.

    Localization of solitons: linear response of the mean-field ground state to weak external potentials

    Full text link
    Two aspects of bright matter-wave solitons in weak external potentials are discussed. First, we briefly review recent results on the Anderson localization of an entire soliton in disordered potentials [Sacha et al. PRL 103, 210402 (2009)], as a paradigmatic showcase of genuine quantum dynamics beyond simple perturbation theory. Second, we calculate the linear response of the mean-field soliton shape to a weak, but otherwise arbitrary external potential, with a detailed application to lattice potentials.Comment: Selected paper presented at the 2010 Spring Meeting of the Quantum Optics and Photonics Section of the German Physical Society. V2: minor changes, published versio

    Routes towards Anderson-Like localization of Bose-Einstein condensates in disordered optical lattices

    Full text link
    We investigate, both experimentally and theoretically, possible routes towards Anderson-like localization of Bose-Einstein condensates in disordered potentials. The dependence of this quantum interference effect on the nonlinear interactions and the shape of the disorder potential is investigated. Experiments with an optical lattice and a superimposed disordered potential reveal the lack of Anderson localization. A theoretical analysis shows that this absence is due to the large length scale of the disorder potential as well as its screening by the nonlinear interactions. Further analysis shows that incommensurable superlattices should allow for the observation of the cross-over from the nonlinear screening regime to the Anderson localized case within realistic experimental parameters.Comment: 4 pages to appear in Phys. Rev. Let

    Attosecond electron thermalization by laser-driven electron recollision in atoms

    Get PDF
    Nonsequential multiple ionization of atoms in intense laser fields is initiated by a recollision between an electron, freed by tunneling, and its parent ion. Following recollision, the initial electron shares its energy with several bound electrons. We use a classical model based on rapid electron thermalization to interpret recent experiments. For neon, good agreement with the available data is obtained with an upper bound of 460 attoseconds for the thermalization time.Comment: 5 pages revtex and 4 figures (eps files

    Stochastic ionization through noble tori: Renormalization results

    Full text link
    We find that chaos in the stochastic ionization problem develops through the break-up of a sequence of noble tori. In addition to being very accurate, our method of choice, the renormalization map, is ideally suited for analyzing properties at criticality. Our computations of chaos thresholds agree closely with the widely used empirical Chirikov criterion

    Changes of the topological charge of vortices

    Full text link
    We consider changes of the topological charge of vortices in quantum mechanics by investigating analytical examples where the creation or annihilation of vortices occurs. In classical hydrodynamics of non-viscous fluids the Helmholtz-Kelvin theorem ensures that the velocity field circulation is conserved. We discuss applicability of the theorem in the hydrodynamical formulation of quantum mechanics showing that the assumptions of the theorem may be broken in quantum evolution of the wavefunction leading to a change of the topological charge.Comment: 5 pages, 2 figures, version accepted for publication in J. Phys.

    Pathways to double ionization of atoms in strong fields

    Full text link
    We discuss the final stages of double ionization of atoms in a strong linearly polarized laser field within a classical model. We propose that all trajectories leading to non-sequential double ionization pass close to a saddle in phase space which we identify and characterize. The saddle lies in a two degree of freedom subspace of symmetrically escaping electrons. The distribution of longitudinal momenta of ions as calculated within the subspace shows the double hump structure observed in experiments. Including a symmetric bending mode of the electrons allows us to reproduce the transverse ion momenta. We discuss also a path to sequential ionization and show that it does not lead to the observed momentum distributions.Comment: 10 pages, 10 figures; fig.6 and 7 exchanged in the final version accepted for publication in Phys. Rev.

    A method for collective excitation of Bose-Einstein condensate

    Full text link
    It is shown that by an appropriate modification of the trapping potential one may create collective excitation in cold atom Bose-Einstein condensate. The proposed method is complementary to earlier suggestions. It seems to be feasible experimentally --- it requires only a proper change in time of the potential in atomic traps, as realized in laboratories already.Comment: 4 pages, 4 figures; major revision, several references added, interacting particles case adde

    Analysis of Localization Phenomena in Weakly Interacting Disordered Lattice Gases

    Get PDF
    Disorder plays a crucial role in many systems particularly in solid state physics. However, the disorder in a particular system can usually not be chosen or controlled. We show that the unique control available for ultracold atomic gases may be used for the production and observation of disordered quantum degenerate gases. A detailed analysis of localization effects for two possible realizations of a disordered potential is presented. In a theoretical analysis clear localization effects are observed when a superlattice is used to provide a quasiperiodic disorder. The effects of localization are analyzed by investigating the superfluid fraction and the localization length within the system. The theoretical analysis in this paper paves a clear path for the future observation of Anderson-like localization in disordered quantum gases.Comment: 9 pages, 13 figure
    • 

    corecore