93 research outputs found

    Chronicling India’s Environment Ministry's Resistance to Democracy in the Forest

    Get PDF
    Ever since the enactment of the Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act in 2006, the Environment Ministry relentlessly resisted this law, its substance and implementation, and its nodal ministry, the Tribal Affairs Ministry. This law is to operationalise the transition of forest governancefromacolonialrepressiveforestregimetoademocratic regime, realigning the power relationship at the national, state and the local levels, if not in all of the forests, at least in a substantial part of the forest. The Environment Ministry and its forest bureaucracy perceive this law as debilitating their inherited hegemonic power which they have grown to believe as their exclusive domain over vast areas designated as “forest”. The paper chronicles this resistance, the methods adopted and the intended outcome. The Forest Rights Act, an enabling law, could finally give the forests the much needed democracy, security and nurturing

    Optimal Control of Molecular Motion Expressed Through Quantum Fluid Dynamics

    Get PDF
    A quantum fluid dynamic control formulation is presented for optimally manipulating atomic and molecular systems. In quantum fluid dynamic the control quantum system is expressed in terms of the probability density and the quantum current. This choice of variables is motivated by the generally expected slowly varying spatial-temporal dependence of the fluid dynamical variables. The quantum fluid dynamic approach is illustrated for manipulation of the ground electronic state dynamics of HCl induced by an external electric field.Comment: 18 pages, latex, 3 figure

    Parametric Study of CPT Resonance in Rubidium Vapor Cell for Application in Atomic Clock

    Get PDF
    The performance of Coherent Population Trapping (CPT) based atomic clocks primarily depends on the characteristics of CPT resonance. We have performed experiments to study and optimize the characteristics of CPT resonance in 87Rb atoms by measuring its contrast and full-width-at-half maximum (FWHM) as function of laser excitation and temperature of atomic vapor cells with different dimensions. A four-level atomic model is used to simulate CPT resonance characteristics along the length of atomic vapor cell. The model incorporates scaling law to understand collision dynamics in cells with different radius for a range of laser excitation intensities and the results are compared with experimental data. The quality figure, calculated from the measured values of FWHM and contrast, decreases with increase in laser intensity and improves in cells with higher dimension (radius). The optimum temperature corresponding to maximum quality figure varies with laser excitation intensity as well as cell dimension. The underlying collision dynamics and density effects that are responsible for the observed resonance characteristics are discussed

    Automatic segmentation of cerebral infarcts in follow-up computed tomography images with convolutional neural networks

    Get PDF
    Background and purpose: Infarct volume is a valuable outcome measure in treatment trials of acute ischemic stroke and is strongly associated with functional outcome. Its manual volumetric assessment is, however, too demanding to be implemented in clinical practice. Objective: To assess the value of convolutional neural networks (CNNs) in the automatic segmentation of infarct volume in follow-up CT images in a large population of patients with acute ischemic stroke. Materials and methods: We included CT images of 1026 patients from a large pooling of patients with acute ischemic stroke. A reference standard for the infarct segmentation was generated by manual delineation. We introduce three CNN models for the segmentati

    Integrative analysis of large scale expression profiles reveals core transcriptional response and coordination between multiple cellular processes in a cyanobacterium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyanobacteria are the only known prokaryotes capable of oxygenic photosynthesis. They play significant roles in global biogeochemical cycles and carbon sequestration, and have recently been recognized as potential vehicles for production of renewable biofuels. <it>Synechocystis </it>sp. PCC 6803 has been extensively used as a model organism for cyanobacterial studies. DNA microarray studies in <it>Synechocystis </it>have shown varying degrees of transcriptome reprogramming under altered environmental conditions. However, it is not clear from published work how transcriptome reprogramming affects pre-existing networks of fine-tuned cellular processes.</p> <p>Results</p> <p>We have integrated 163 transcriptome data sets generated in response to numerous environmental and genetic perturbations in <it>Synechocystis</it>. Our analyses show that a large number of genes, defined as the core transcriptional response (CTR), are commonly regulated under most perturbations. The CTR contains nearly 12% of <it>Synechocystis </it>genes found on its chromosome. The majority of genes in the CTR are involved in photosynthesis, translation, energy metabolism and stress protection. Our results indicate that a large number of differentially regulated genes identified in most reported studies in <it>Synechocystis </it>under different perturbations are associated with the general stress response. We also find that a majority of genes in the CTR are coregulated with 25 regulatory genes. Some of these regulatory genes have been implicated in cellular responses to oxidative stress, suggesting that reactive oxygen species are involved in the regulation of the CTR. A Bayesian network, based on the regulation of various KEGG pathways determined from the expression patterns of their associated genes, has revealed new insights into the coordination between different cellular processes.</p> <p>Conclusion</p> <p>We provide here the first integrative analysis of transcriptome data sets generated in a cyanobacterium. This compilation of data sets is a valuable resource to researchers for all cyanobacterial gene expression related queries. Importantly, our analysis provides a global description of transcriptional reprogramming under different perturbations and a basic framework to understand the strategies of cellular adaptations in <it>Synechocystis</it>.</p
    corecore