Lehigh Valley Health Network LVHN Scholarly Works

Department of Obstetrics & Gynecology

A Cost Analysis of Postoperative Pain Management in Endometrial Cancer Patients: Robotic Department of Surgery vs. Laparoscopy Department of Surgery

Martin A. Martino MD Lehigh Valley Health Network, martin a.martino@lvhn.org

Jocelyn Shubella Lehigh Valley Health Network, Jocelyn.Shubella@lvhn.org

Rachel Miller PA-C

Joycelyn C. Schindler MD Lehigh Valley Health Network, Joycelyn_C.Schindler@lvhn.org

Sharon R. Kimmel PhD, MHA Lehigh Valley Health Network, Sharon.Kimmel@lvhn.org

See next page for additional authors

Follow this and additional works at: https://scholarlyworks.lvhn.org/obstetrics-gynecology Part of the <u>Obstetrics and Gynecology Commons</u>, <u>Oncology Commons</u>, and the <u>Surgery</u> <u>Commons</u>

Published In/Presented At

Martino, M., Kimmel, S., Miller, R., Schindler, J., Shubella, J., Williams, S., Thomas, M., & Boulay, R. (2011, March 6-9). A Cost Analysis of Postoperative Pain Management in Endometrial Cancer Patients: Robotic Department of Surgery vs. Laparoscopy Department of Surgery. Poster presented at: The 2011 Society of Gynecologic Oncology (SGO), Orlando, FL.

This Poster is brought to you for free and open access by LVHN Scholarly Works. It has been accepted for inclusion in LVHN Scholarly Works by an authorized administrator. For more information, please contact LibraryServices@lvhn.org.

Authors

Martin A. Martino MD; Jocelyn Shubella; Rachel Miller PA-C; Joycelyn C. Schindler MD; Sharon R. Kimmel PhD, MHA; Shamol Williams MSII; Richard Boulay MD; and M Bijoy Thomas MD

Robotic Surgery vs. Laparoscopy Surgery

A Cost Analysis of Postoperative Pain Management in Endometrial Cancer Patients: Martin A. Martino MD, Jocelyn Shubella, Rachel Miller PA-C, Joycelyn Schindler MD, Sharon Kimmel PhD, Sharon Kimmel Ph

Background:

Postoperative pain management is an advantage of minimally invasive surgery, along with reduced morbidity, decreased hospital length of stay, and improved patient satisfaction scores.

As patients experience less pain, they consume less postoperative pain medication and perhaps less narcotic medications. This may lead to fewer nurse interventions and thus a reduction in the cost associated to deliver that care.

Robotic Surgery is the most advanced minimally invasive technique presently available compared to standard laparoscopy.

Advantages of robotic technology over standard laparoscopy include:

- Tools with six degrees of rotational freedom which enables the surgeon to make dexterous hand motions
- 3-D, high-definition view of the operative field
- Ergonomically designed console which decreases surgeon's fatigue

Objective:

To compare the postoperative pharmacotherapeutic pain management in endometrial cancer patients who had a robotic-assisted or laparoscopic-assisted hysterectomy with/without lymph node dissections

Primary outcomes:

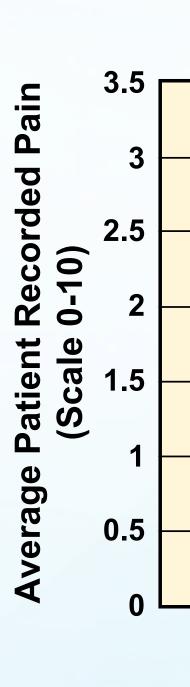
- Patient-recorded pain scores
- Nursing pain management interventions

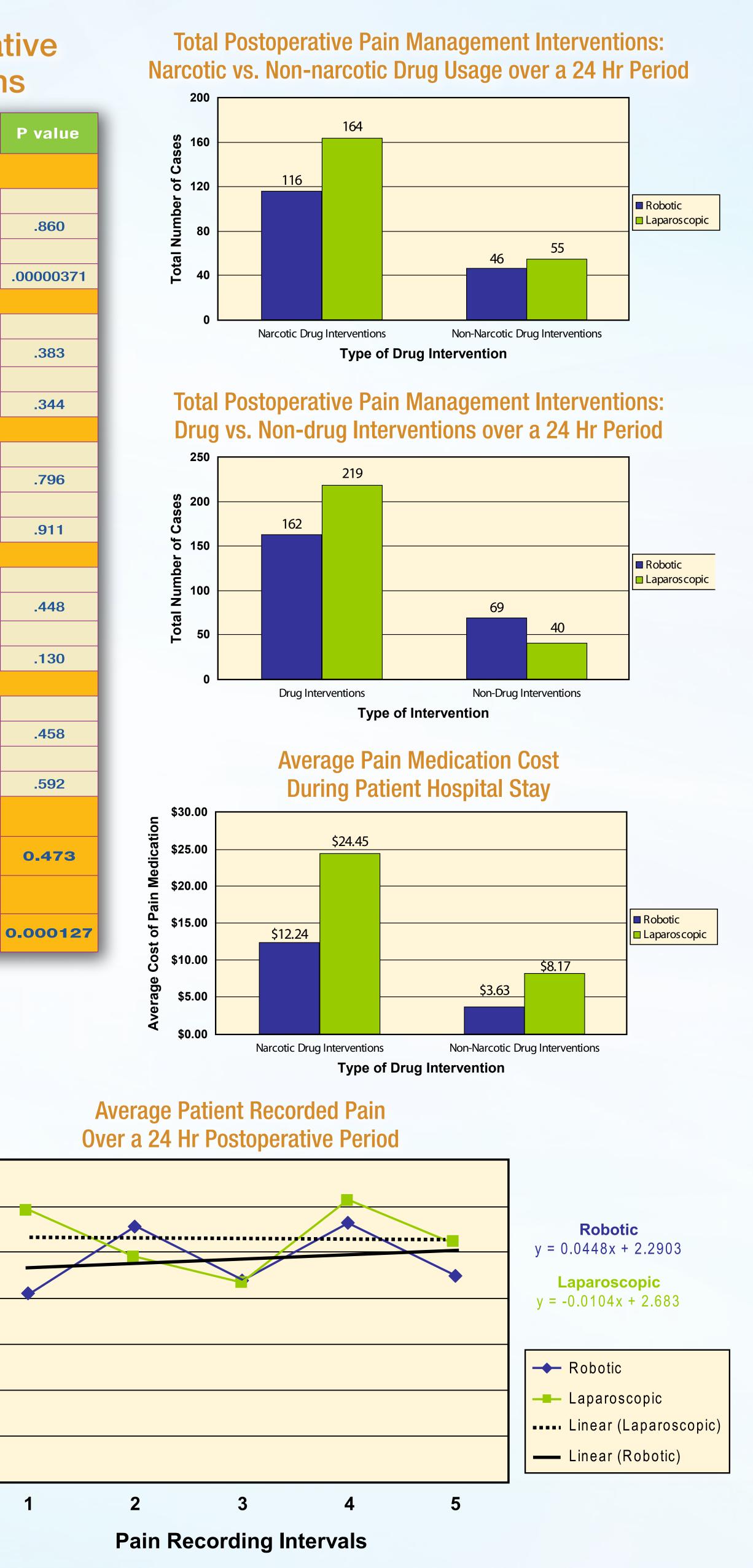
Secondary outcomes:

Cost of postoperative pain medication

Lehigh Valley Health Network, Allentown, Pennsylvania

Table 1. Patient Demographics


	Robotic (n=101)	Laparoscopic (n=114)	P value			
Age (y)						
Mean	61.8	63.6	.241			
SD	11.7	11.3				
BMI (kg/m²)						
Mean	35.3	33.5	.173			
SD	9.6	8.3				
Clinical Stage						
ΙΑ	38	28				
IB	34	58				
IC	9	16				
IIA	4	2				
IIB	6	3				
IIIA/IIIB/IIIC	9	5				
IVA/IVB	0	1				
Total Nodes						
n	31	53	.322			
Mean	18.6	16.5				
SD	10.1	7.3				
Total Pelvic Nodes						
Mean	14.1	12.2	.141			
SD	7.3	4.7				
Total Periaortic Nodes						
Mean	4.6	5.3	.440			
SD	3.5	3.8				
Comorbidities						
Hypertension	33	61				
Diabetes	12	20				
Asthma	1	3				


Table 2. Frequency of Postoperative Pain Management Interventions

	Robotic (n=101)	Laparoscopic (n=114)			
INITIAL INTERVENTION					
Narcotic drug interventions	17	43			
Non-narcotic drug interventions	4	9			
Total drug interventions	21	52			
Non-drug interventions	32	12			
2nd INTERVENTION					
Narcotic drug interventions	33	42			
Non-narcotic drug interventions	12	10			
Total drug interventions	45	52			
Non-drug interventions	10	7			
3rd INTERVENTION					
Narcotic drug interventions	25	31			
Non-narcotic drug interventions	11	12			
Total drug interventions	36	43			
Non-drug interventions	8	9			
4th INTERVENTION					
Narcotic drug interventions	30	29			
Non-narcotic drug interventions	10	14			
Total drug interventions	40	43			
Non-drug interventions	14	7			
5th INTERVENTION					
Narcotic drug interventions	11	19			
Non-narcotic drug interventions	9	10			
Total drug interventions	20	29			
Non-drug interventions	5	5			
Total narcotic drug interventions over 24 hour period	116	164			
Total non-narcotic drug Interventions over 24 hour period	46	55			
Total drug interventions over 24 hour period	162	219			
Total non-drug interventions over 24 hours period	69	40			

Table 3. Patient Recorded Pain Levels

	Robotic (n=101)	Laparoscopic (n=114)	P value		
Initial Pain Score					
Mean	2.1	3.0			
SD	2.48	2.61	0.012		
2nd Pain Score					
Mean	2.8	2.5			
SD	2.65	2.65	0.396		
3rd Pain Score					
Mean	2.2	2.2			
SD	2.38	2.47	0.929		
4th Pain Score					
Mean	2.8	3.1			
SD	2.32	2.63	0.566		
5th Pain Score					
Mean	2.3	2.6			
SD	2.52	2.54	0.504		

Methods:

- intervention.

Results:

Two hundred fifteen (101 robotic and 114 laparoscopic) patients met the inclusion criteria. There were no significant differences between the two groups in age, BMI, clinical stage, comorbidities, lymph nodes retrieved, and the number of narcotic v. non-narcotic drug interventions administered.

Primary outcomes:

P=.012).

Secondary outcomes:

P<.01).

Conclusion:

- their pain.

References:

• Pain scores and nursing interventions were analyzed for five intervals over a 24-hour postoperative period, beginning once the patient entered the floor. • Nursing interventions were categorized as either a drug or non-drug

• Drug interentions were subcategorized as narcotic or non-narcotic.

• Data was analyzed using Student's t-tests and Pearson's X² tests in SPSS.

• This is an IRB approved, retrospective cohort study.

• Robotic patients had a lower number of initial drug interventions (21 vs) 52; P<.01) and total drug interventions (162 vs 219; P<.01). The robotic cohort also had a lower initial patient-recorded pain score (2.1 vs 3.0;

• There was a 50% reduction in the postoperative pain medication cost on the day of surgery for robotic patients (\$12.24 vs \$24.45; P<.01), and a 56% cost reduction for the rest of their length of stay (\$3.63 vs \$8.17;

• Endometrial cancer patients who have robotic surgery experience less initial postoperative pain and have fewer drug interventions to manage

• The cost associated to deliver that care represents a savings of greater than 50% when compared to a laparoscopic cohort.

• These factors demonstrate the value of robotic surgery by delivering higher quality care at a lower cost.

Bell MC, Torgerson J, Seshadri-Kreaden U, Suttle AW, Hunt S. Comparison of outcomes and cost for endo metrial cancer staging via traditional laparotomy, standard laparoscopy and robotic techniques. Gynecol Oncol 2008; 111:407-411

Boggess JF, Gehrig PA, Cantrell L, Shafer A, Ridgway M, Skinner EN, et al. A comparative study of 3 surgical methods for hysterectomy with staging for endometrial cancer: robotic assistance, laparoscopy, laparotomy. Am J Obstet Gynecol 2008;199:360-369.

Jung YW, Lee DW, Kim SW, Nam JE, Kim JH, Kim JW, et al. Robot-Assisted Staging Using Three Robotic Arms for Endometrial Cancer: Comparison to Laparoscopy and Laparotomy at a Single Institution. J. Surg. Oncol. 2010;101:116–121 staging for endometrial cancer: Robotics or laparoscopy. Gynecol Oncol 2009;113:36–41.

Scholarly Excellence. Leadership Experiences. Collaborative Training.

Experiences for a lifetime. A network for life.™