48,038 research outputs found

    Degree Distribution of Competition-Induced Preferential Attachment Graphs

    Full text link
    We introduce a family of one-dimensional geometric growth models, constructed iteratively by locally optimizing the tradeoffs between two competing metrics, and show that this family is equivalent to a family of preferential attachment random graph models with upper cutoffs. This is the first explanation of how preferential attachment can arise from a more basic underlying mechanism of local competition. We rigorously determine the degree distribution for the family of random graph models, showing that it obeys a power law up to a finite threshold and decays exponentially above this threshold. We also rigorously analyze a generalized version of our graph process, with two natural parameters, one corresponding to the cutoff and the other a ``fertility'' parameter. We prove that the general model has a power-law degree distribution up to a cutoff, and establish monotonicity of the power as a function of the two parameters. Limiting cases of the general model include the standard preferential attachment model without cutoff and the uniform attachment model.Comment: 24 pages, one figure. To appear in the journal: Combinatorics, Probability and Computing. Note, this is a long version, with complete proofs, of the paper "Competition-Induced Preferential Attachment" (cond-mat/0402268

    From Koszul duality to Poincar\'e duality

    Full text link
    We discuss the notion of Poincar\'e duality for graded algebras and its connections with the Koszul duality for quadratic Koszul algebras. The relevance of the Poincar\'e duality is pointed out for the existence of twisted potentials associated to Koszul algebras as well as for the extraction of a good generalization of Lie algebras among the quadratic-linear algebras.Comment: Dedicated to Raymond Stora. 27 page

    On the push&pull protocol for rumour spreading

    Full text link
    The asynchronous push&pull protocol, a randomized distributed algorithm for spreading a rumour in a graph GG, works as follows. Independent Poisson clocks of rate 1 are associated with the vertices of GG. Initially, one vertex of GG knows the rumour. Whenever the clock of a vertex xx rings, it calls a random neighbour yy: if xx knows the rumour and yy does not, then xx tells yy the rumour (a push operation), and if xx does not know the rumour and yy knows it, yy tells xx the rumour (a pull operation). The average spread time of GG is the expected time it takes for all vertices to know the rumour, and the guaranteed spread time of GG is the smallest time tt such that with probability at least 11/n1-1/n, after time tt all vertices know the rumour. The synchronous variant of this protocol, in which each clock rings precisely at times 1,2,1,2,\dots, has been studied extensively. We prove the following results for any nn-vertex graph: In either version, the average spread time is at most linear even if only the pull operation is used, and the guaranteed spread time is within a logarithmic factor of the average spread time, so it is O(nlogn)O(n\log n). In the asynchronous version, both the average and guaranteed spread times are Ω(logn)\Omega(\log n). We give examples of graphs illustrating that these bounds are best possible up to constant factors. We also prove theoretical relationships between the guaranteed spread times in the two versions. Firstly, in all graphs the guaranteed spread time in the asynchronous version is within an O(logn)O(\log n) factor of that in the synchronous version, and this is tight. Next, we find examples of graphs whose asynchronous spread times are logarithmic, but the synchronous versions are polynomially large. Finally, we show for any graph that the ratio of the synchronous spread time to the asynchronous spread time is O(n2/3)O(n^{2/3}).Comment: 25 page

    Spatio-Temporal Scaling of Solar Surface Flows

    Full text link
    The Sun provides an excellent natural laboratory for nonlinear phenomena. We use motions of magnetic bright points on the solar surface, at the smallest scales yet observed, to study the small scale dynamics of the photospheric plasma. The paths of the bright points are analyzed within a continuous time random walk framework. Their spatial and temporal scaling suggest that the observed motions are the walks of imperfectly correlated tracers on a turbulent fluid flow in the lanes between granular convection cells.Comment: Now Accepted by Physical Review Letter

    A New Constraint on the Escape Fraction in Distant Galaxies Using Gamma-ray Burst Afterglow Spectroscopy

    Full text link
    We describe a new method to measure the escape fraction fesc of ionizing radiation from distant star-forming galaxies using the afterglow spectra of long-duration gamma-ray bursts (GRBs). Optical spectra of GRB afterglows allow us to evaluate the optical depth of the host ISM, according to the neutral hydrogen column density N(HI) observed along the sightlines toward the star-forming regions where the GRBs are found. Different from previous effort in searching for faint, transmitted Lyman continuum photons, our method is not subject to background subtraction uncertainties and does not require prior knowledge of either the spectral shape of the host galaxy population or the IGM Lya forest absorption along these GRB sightlines. Because most GRBs occur in sub-L_* galaxies, our study also offers the first constraint on fesc for distant low-mass galaxies that dominate the cosmic luminosity density. We have compiled a sample of 27 GRBs at redshift z>2 for which the underlying N(HI) in the host ISM are known. These GRBs together offer a statistical sampling of the integrated optical depth to ionizing photons along random sightlines from star-forming regions in the host galaxies, and allow us to estimate the mean escape fraction averaged over different viewing angles. We find =0.02\pm 0.02 and place a 95% c.l. upper limit <= 0.075 for these hosts. We discuss possible biases of our approach and implications of the result. Finally, we propose to extend this technique for measuring at z~0.2 using spectra of core-collapse supernovae.Comment: Five journal pages, including one figure; ApJL in pres

    Revealing the role of electrons and phonons in the ultrafast recovery of charge density wave correlations in 1TT-TiSe2_2

    Full text link
    Using time- and angle-resolved photoemission spectroscopy with selective near- and mid-infrared photon excitations, we investigate the femtosecond dynamics of the charge density wave (CDW) phase in 1TT-TiSe2_2, as well as the dynamics of CDW fluctuations at 240 K. In the CDW phase, we observe the coherent oscillation of the CDW amplitude mode. At 240 K, we single out an ultrafast component in the recovery of the CDW correlations, which we explain as the manifestation of electron-hole correlations. Our momentum-resolved study of femtosecond electron dynamics supports a mechanism for the CDW phase resulting from the cooperation between the interband Coulomb interaction, the mechanism of excitonic insulator phase formation, and electron-phonon coupling.Comment: 9 pages, 6 figure

    Chromospheric Variability in SDSS M Dwarfs. II. Short-Timescale H-alpha Variability

    Full text link
    [Abridged] We present the first comprehensive study of short-timescale chromospheric H-alpha variability in M dwarfs using the individual 15 min spectroscopic exposures for 52,392 objects from the Sloan Digital Sky Survey. Our sample contains about 10^3-10^4 objects per spectral type bin in the range M0-M9, with a total of about 206,000 spectra and a typical number of 3 exposures per object (ranging up to a maximum of 30 exposures). Using this extensive data set we find that about 16% of the sources exhibit H-alpha emission in at least one exposure, and of those about 45% exhibit H-alpha emission in all of the available exposures. Within the sample of objects with H-alpha emission, only 26% are consistent with non-variable emission, independent of spectral type. The H-alpha variability, quantified in terms of the ratio of maximum to minimum H-alpha equivalent width (R_EW), and the ratio of the standard deviation to the mean (sigma_EW/), exhibits a rapid rise from M0 to M5, followed by a plateau and a possible decline in M9 objects. In particular, R_EW increases from a median value of about 1.8 for M0-M3 to about 2.5 for M7-M9, and variability with R_EW>10 is only observed in objects later than M5. For the combined sample we find that the R_EW values follow an exponential distribution with N(R_EW) exp[-(R_EW-1)/2]; for M5-M9 objects the characteristic scale is R_EW-1\approx 2.7, indicative of stronger variability. In addition, we find that objects with persistent H-alpha emission exhibit smaller values of R_EW than those with intermittent H-alpha emission. Based on these results we conclude that H-alpha variability in M dwarfs on timescales of 15 min to 1 hr increases with later spectral type, and that the variability is larger for intermittent sources.Comment: Submitted to ApJ; 20 pages, 15 figure
    corecore