12,652 research outputs found

    Adaptive Target Recognition: A Case Study Involving Airport Baggage Screening

    Full text link
    This work addresses the question whether it is possible to design a computer-vision based automatic threat recognition (ATR) system so that it can adapt to changing specifications of a threat without having to create a new ATR each time. The changes in threat specifications, which may be warranted by intelligence reports and world events, are typically regarding the physical characteristics of what constitutes a threat: its material composition, its shape, its method of concealment, etc. Here we present our design of an AATR system (Adaptive ATR) that can adapt to changing specifications in materials characterization (meaning density, as measured by its x-ray attenuation coefficient), its mass, and its thickness. Our design uses a two-stage cascaded approach, in which the first stage is characterized by a high recall rate over the entire range of possibilities for the threat parameters that are allowed to change. The purpose of the second stage is to then fine-tune the performance of the overall system for the current threat specifications. The computational effort for this fine-tuning for achieving a desired PD/PFA rate is far less than what it would take to create a new classifier with the same overall performance for the new set of threat specifications

    Discrete element weld model, phase 2

    Get PDF
    A numerical method was developed for analyzing the tungsten inert gas (TIG) welding process. The phenomena being modeled include melting under the arc and the flow in the melt under the action of buoyancy, surface tension, and electromagnetic forces. The latter entails the calculation of the electric potential and the computation of electric current and magnetic field therefrom. Melting may occur at a single temperature or over a temperature range, and the electrical and thermal conductivities can be a function of temperature. Results of sample calculations are presented and discussed at length. A major research contribution has been the development of numerical methodology for the calculation of phase change problems in a fixed grid framework. The model has been implemented on CHAM's general purpose computer code PHOENICS. The inputs to the computer model include: geometric parameters, material properties, and weld process parameters

    Dense matter equation of state for neutron star mergers

    Full text link
    In simulations of binary neutron star mergers, the dense matter equation of state (EOS) is required over wide ranges of density and temperature as well as under conditions in which neutrinos are trapped, and the effects of magnetic fields and rotation prevail. Here we assess the status of dense matter theory and point out the successes and limitations of approaches currently in use. A comparative study of the excluded volume (EV) and virial approaches for the npαnp\alpha system using the equation of state of Akmal, Pandharipande and Ravenhall for interacting nucleons is presented in the sub-nuclear density regime. Owing to the excluded volume of the α\alpha-particles, their mass fraction vanishes in the EV approach below the baryon density 0.1 fm3^{-3}, whereas it continues to rise due to the predominantly attractive interactions in the virial approach. The EV approach of Lattimer et al. is extended here to include clusters of light nuclei such as d, 3^3H and 3^3He in addition to α\alpha-particles. Results of the relevant state variables from this development are presented and enable comparisons with related but slightly different approaches in the literature. We also comment on some of the sweet and sour aspects of the supra-nuclear EOS. The extent to which the neutron star gravitational and baryon masses vary due to thermal effects, neutrino trapping, magnetic fields and rotation are summarized from earlier studies in which the effects from each of these sources were considered separately. Increases of about 20%(50%)20\% (\gtrsim 50\%) occur for rigid (differential) rotation with comparable increases occurring in the presence of magnetic fields only for fields in excess of 101810^{18} Gauss. Comparatively smaller changes occur due to thermal effects and neutrino trapping. Some future studies to gain further insight into the outcome of dynamical simulations are suggested.Comment: Revised manuscript with one additional figure and previous Fig. 4 replaced, 19 additional references and new tex

    Alterations in Lipids and Adipocyte Hormones in Female-to-Male Transsexuals

    Get PDF
    Testosterone therapy in men and women results in decreased high-density lipoprotein cholesterol (HDL) and increased low-density lipoprotein cholesterol (LDL). We sought to determine whether testosterone therapy has this same effect on lipid parameters and adipocyte hormones in female-to-male (FTM) transsexuals. Twelve FTM transsexuals provided a fasting lipid profile including serum total cholesterol, HDL, LDL, and triglycerides prior to and after 1 year of testosterone therapy (testosterone enanthate or cypionate 50–125mg IM every two weeks). Subjects experienced a significant decrease in mean serum HDL (52 ± 11 to 40 ± 7mg/dL) (P < .001). The mean LDL (P = .316), triglyceride (P = .910), and total cholesterol (P = .769) levels remained unchanged. In a subset of subjects, we measured serum leptin levels which were reduced by 25% but did not reach statistical significance (P =.181) while resistin levels remained unchanged. We conclude that testosterone therapy in FTM transsexuals can promote an increased atherogenic lipid profile by lowering HDL and possibly reduce serum leptin levels. However, long-term studies are needed to determine whether decreases in HDL result in adverse cardiovascular outcomes.National Institutes of Health (M01RR000533
    corecore