92 research outputs found
Electroweak Evolution Equations
Enlarging a previous analysis, where only fermions and transverse gauge
bosons were taken into account, we write down infrared-collinear evolution
equations for the Standard Model of electroweak interactions computing the full
set of splitting functions. Due to the presence of double logs which are
characteristic of electroweak interactions (Bloch-Nordsieck violation), new
infrared singular splitting functions have to be introduced. We also include
corrections related to the third generation Yukawa couplings.Comment: 15 pages, 3 figure
Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms
Mensi S, Naud R, Pozzorini C, Avermann M, Petersen CCH, Gerstner W. Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. J Neurophysiol 107: 1756-1775, 2012. First published December 7, 2011; doi:10.1152/jn.00408.2011.-Cortical information processing originates from the exchange of action potentials between many cell types. To capture the essence of these interactions, it is of critical importance to build mathematical models that reflect the characteristic features of spike generation in individual neurons. We propose a framework to automatically extract such features from current-clamp experiments, in particular the passive properties of a neuron (i.e., membrane time constant, reversal potential, and capacitance), the spike-triggered adaptation currents, as well as the dynamics of the action potential threshold. The stochastic model that results from our maximum likelihood approach accurately predicts the spike times, the subthreshold voltage, the firing patterns, and the type of frequency-current curve. Extracting the model parameters for three cortical cell types revealed that cell types show highly significant differences in the time course of the spike-triggered currents and moving threshold, that is, in their adaptation and refractory properties but not in their passive properties. In particular, GABAergic fast-spiking neurons mediate weak adaptation through spike-triggered currents only, whereas regular spiking excitatory neurons mediate adaptation with both moving threshold and spike-triggered currents. GABAergic nonfast-spiking neurons combine the two distinct adaptation mechanisms with reduced strength. Differences between cell types are large enough to enable automatic classification of neurons into three different classes. Parameter extraction is performed for individual neurons so that we find not only the mean parameter values for each neuron type but also the spread of parameters within a group of neurons, which will be useful for future large-scale computer simulations
Sudakov Electroweak effects in transversely polarized beams
We study Standard Model electroweak radiative corrections for fully inclusive
observables with polarized fermionic beams. Our calculations are relevant in
view of the possibility for Next Generation Linear colliders of having
transversely and/or longitudinally polarized beams. The case of initial
transverse polarization is particularly interesting because of the interplay of
infrared/collinear logarithms of different origins, related both to the
nonabelian SU(2) and abelian U(1) sectors. The Standard model effects turn out
to be in the 10% range at the TeV scale, therefore particularly relevant in
order to disentangle possible New Physics effects.Comment: 5 pages,4 figure
Universality in Systems with Power-Law Memory and Fractional Dynamics
There are a few different ways to extend regular nonlinear dynamical systems
by introducing power-law memory or considering fractional
differential/difference equations instead of integer ones. This extension
allows the introduction of families of nonlinear dynamical systems converging
to regular systems in the case of an integer power-law memory or an integer
order of derivatives/differences. The examples considered in this review
include the logistic family of maps (converging in the case of the first order
difference to the regular logistic map), the universal family of maps, and the
standard family of maps (the latter two converging, in the case of the second
difference, to the regular universal and standard maps). Correspondingly, the
phenomenon of transition to chaos through a period doubling cascade of
bifurcations in regular nonlinear systems, known as "universality", can be
extended to fractional maps, which are maps with power-/asymptotically
power-law memory. The new features of universality, including cascades of
bifurcations on single trajectories, which appear in fractional (with memory)
nonlinear dynamical systems are the main subject of this review.Comment: 23 pages 7 Figures, to appear Oct 28 201
Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report
This Report summarizes the proceedings of the 2015 Les Houches workshop on
Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant
for high precision Standard Model calculations, (II) the new PDF4LHC parton
distributions, (III) issues in the theoretical description of the production of
Standard Model Higgs bosons and how to relate experimental measurements, (IV) a
host of phenomenological studies essential for comparing LHC data from Run I
with theoretical predictions and projections for future measurements in Run II,
and (V) new developments in Monte Carlo event generators.Comment: Proceedings of the Standard Model Working Group of the 2015 Les
Houches Workshop, Physics at TeV Colliders, Les Houches 1-19 June 2015. 227
page
NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders
We present details of a calculation of the cross section for hadronic
top-antitop production in next-to-leading order (NLO) QCD, including the decays
of the top and antitop into bottom quarks and leptons. This calculation is
based on matrix elements for \nu e e+ \mu- \bar{\nu}_{\mu}b\bar{b} production
and includes all non-resonant diagrams, interferences, and off-shell effects of
the top quarks. Such contributions are formally suppressed by the top-quark
width and turn out to be small in the inclusive cross section. However, they
can be strongly enhanced in exclusive observables that play an important role
in Higgs and new-physics searches. Also non-resonant and off-shell effects due
to the finite W-boson width are investigated in detail, but their impact is
much smaller than naively expected. We also introduce a matching approach to
improve NLO calculations involving intermediate unstable particles. Using a
fixed QCD scale leads to perturbative instabilities in the high-energy tails of
distributions, but an appropriate dynamical scale stabilises NLO predictions.
Numerical results for the total cross section, several distributions, and
asymmetries are presented for Tevatron and the LHC at 7 TeV, 8 TeV, and 14 TeV.Comment: 61 pp. Matches version published in JHEP; one more reference adde
The SM and NLO multileg working group: Summary report
This report summarizes the activities of the SM and NLO Multileg Working
Group of the Workshop "Physics at TeV Colliders", Les Houches, France 8-26
June, 2009.Comment: 169 pages, Report of the SM and NLO Multileg Working Group for the
Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 200
Electroweak corrections to W-boson pair production at the LHC
Vector-boson pair production ranks among the most important Standard-Model
benchmark processes at the LHC, not only in view of on-going Higgs analyses.
These processes may also help to gain a deeper understanding of the electroweak
interaction in general, and to test the validity of the Standard Model at
highest energies. In this work, the first calculation of the full one-loop
electroweak corrections to on-shell W-boson pair production at hadron colliders
is presented. We discuss the impact of the corrections on the total cross
section as well as on relevant differential distributions. We observe that
corrections due to photon-induced channels can be amazingly large at energies
accessible at the LHC, while radiation of additional massive vector bosons does
not influence the results significantly.Comment: 29 pages, 15 figures, 4 tables; some references and comments on
\gamma\gamma -> WW added; matches version published in JHE
Electroweak physics
Work on electroweak precision calculations and event generators for electroweak physics studies at current and future colliders is summarized
- …