92 research outputs found

    Electroweak Evolution Equations

    Full text link
    Enlarging a previous analysis, where only fermions and transverse gauge bosons were taken into account, we write down infrared-collinear evolution equations for the Standard Model of electroweak interactions computing the full set of splitting functions. Due to the presence of double logs which are characteristic of electroweak interactions (Bloch-Nordsieck violation), new infrared singular splitting functions have to be introduced. We also include corrections related to the third generation Yukawa couplings.Comment: 15 pages, 3 figure

    Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms

    Get PDF
    Mensi S, Naud R, Pozzorini C, Avermann M, Petersen CCH, Gerstner W. Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. J Neurophysiol 107: 1756-1775, 2012. First published December 7, 2011; doi:10.1152/jn.00408.2011.-Cortical information processing originates from the exchange of action potentials between many cell types. To capture the essence of these interactions, it is of critical importance to build mathematical models that reflect the characteristic features of spike generation in individual neurons. We propose a framework to automatically extract such features from current-clamp experiments, in particular the passive properties of a neuron (i.e., membrane time constant, reversal potential, and capacitance), the spike-triggered adaptation currents, as well as the dynamics of the action potential threshold. The stochastic model that results from our maximum likelihood approach accurately predicts the spike times, the subthreshold voltage, the firing patterns, and the type of frequency-current curve. Extracting the model parameters for three cortical cell types revealed that cell types show highly significant differences in the time course of the spike-triggered currents and moving threshold, that is, in their adaptation and refractory properties but not in their passive properties. In particular, GABAergic fast-spiking neurons mediate weak adaptation through spike-triggered currents only, whereas regular spiking excitatory neurons mediate adaptation with both moving threshold and spike-triggered currents. GABAergic nonfast-spiking neurons combine the two distinct adaptation mechanisms with reduced strength. Differences between cell types are large enough to enable automatic classification of neurons into three different classes. Parameter extraction is performed for individual neurons so that we find not only the mean parameter values for each neuron type but also the spread of parameters within a group of neurons, which will be useful for future large-scale computer simulations

    Sudakov Electroweak effects in transversely polarized beams

    Full text link
    We study Standard Model electroweak radiative corrections for fully inclusive observables with polarized fermionic beams. Our calculations are relevant in view of the possibility for Next Generation Linear colliders of having transversely and/or longitudinally polarized beams. The case of initial transverse polarization is particularly interesting because of the interplay of infrared/collinear logarithms of different origins, related both to the nonabelian SU(2) and abelian U(1) sectors. The Standard model effects turn out to be in the 10% range at the TeV scale, therefore particularly relevant in order to disentangle possible New Physics effects.Comment: 5 pages,4 figure

    Universality in Systems with Power-Law Memory and Fractional Dynamics

    Full text link
    There are a few different ways to extend regular nonlinear dynamical systems by introducing power-law memory or considering fractional differential/difference equations instead of integer ones. This extension allows the introduction of families of nonlinear dynamical systems converging to regular systems in the case of an integer power-law memory or an integer order of derivatives/differences. The examples considered in this review include the logistic family of maps (converging in the case of the first order difference to the regular logistic map), the universal family of maps, and the standard family of maps (the latter two converging, in the case of the second difference, to the regular universal and standard maps). Correspondingly, the phenomenon of transition to chaos through a period doubling cascade of bifurcations in regular nonlinear systems, known as "universality", can be extended to fractional maps, which are maps with power-/asymptotically power-law memory. The new features of universality, including cascades of bifurcations on single trajectories, which appear in fractional (with memory) nonlinear dynamical systems are the main subject of this review.Comment: 23 pages 7 Figures, to appear Oct 28 201

    Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report

    Get PDF
    This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators.Comment: Proceedings of the Standard Model Working Group of the 2015 Les Houches Workshop, Physics at TeV Colliders, Les Houches 1-19 June 2015. 227 page

    NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders

    Full text link
    We present details of a calculation of the cross section for hadronic top-antitop production in next-to-leading order (NLO) QCD, including the decays of the top and antitop into bottom quarks and leptons. This calculation is based on matrix elements for \nu e e+ \mu- \bar{\nu}_{\mu}b\bar{b} production and includes all non-resonant diagrams, interferences, and off-shell effects of the top quarks. Such contributions are formally suppressed by the top-quark width and turn out to be small in the inclusive cross section. However, they can be strongly enhanced in exclusive observables that play an important role in Higgs and new-physics searches. Also non-resonant and off-shell effects due to the finite W-boson width are investigated in detail, but their impact is much smaller than naively expected. We also introduce a matching approach to improve NLO calculations involving intermediate unstable particles. Using a fixed QCD scale leads to perturbative instabilities in the high-energy tails of distributions, but an appropriate dynamical scale stabilises NLO predictions. Numerical results for the total cross section, several distributions, and asymmetries are presented for Tevatron and the LHC at 7 TeV, 8 TeV, and 14 TeV.Comment: 61 pp. Matches version published in JHEP; one more reference adde

    The SM and NLO multileg working group: Summary report

    Get PDF
    This report summarizes the activities of the SM and NLO Multileg Working Group of the Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 2009.Comment: 169 pages, Report of the SM and NLO Multileg Working Group for the Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 200

    Electroweak corrections to W-boson pair production at the LHC

    Get PDF
    Vector-boson pair production ranks among the most important Standard-Model benchmark processes at the LHC, not only in view of on-going Higgs analyses. These processes may also help to gain a deeper understanding of the electroweak interaction in general, and to test the validity of the Standard Model at highest energies. In this work, the first calculation of the full one-loop electroweak corrections to on-shell W-boson pair production at hadron colliders is presented. We discuss the impact of the corrections on the total cross section as well as on relevant differential distributions. We observe that corrections due to photon-induced channels can be amazingly large at energies accessible at the LHC, while radiation of additional massive vector bosons does not influence the results significantly.Comment: 29 pages, 15 figures, 4 tables; some references and comments on \gamma\gamma -> WW added; matches version published in JHE
    corecore