17 research outputs found
Effect of Music Therapy on Anxiety and Depression in Patients With Alzheimer\u27s Type Dementia: Randomised, Controlled Study
BACKGROUND/AIMS: Numerous studies have indicated the value of music therapy in the management of patients with Alzheimer\u27s disease. A recent pilot study demonstrated the feasibility and usefulness of a new music therapy technique. The aim of this controlled, randomised study was to assess the effects of this new music therapy technique on anxiety and depression in patients with mild to moderate Alzheimer-type dementia. METHODS: This was a single-centre, comparative, controlled, randomised study, with blinded assessment of its results. The duration of follow-up was 24 weeks. The treated group (n = 15) participated in weekly sessions of individual, receptive music therapy. The musical style of the session was chosen by the patient. The validated \u27U\u27 technique was employed. The control group (n = 15) participated under the same conditions in reading sessions. The principal endpoint, measured at weeks 1, 4, 8, 16 and 24, was the level of anxiety (Hamilton Scale). Changes in the depression score (Geriatric Depression Scale) were also analyzed as a secondary endpoint. RESULTS: Significant improvements in anxiety (p \u3c 0.01) and depression (p \u3c 0.01) were observed in the music therapy group as from week 4 and until week 16. The effect of music therapy was sustained for up to 8 weeks after the discontinuation of sessions between weeks 16 and 24 (p \u3c 0.01). CONCLUSION: These results confirm the valuable effect of music therapy on anxiety and depression in patients with mild to moderate Alzheimer\u27s disease. This new music therapy technique is simple to implement and can easily be integrated in a multidisciplinary programme for the management of Alzheimer\u27s disease
Neutralizing Capacity of Monoclonal Antibodies That Recognize Peptide Sequences Underlying the Carbohydrates on gp41 of Simian Immunodeficiency Virus
Extensive glycosylation of the envelope spikes of human and simian immunodeficiency virus (HIV and SIV) is an important factor for the resistance of these viruses to neutralization by antibodies. SIVmac239 gp41 has three closely spaced sites for N-linked carbohydrate attachment. Rhesus macaques experimentally infected with mutant versions of SIVmac239 lacking two or three of these carbohydrate sites developed strong serum reactivity against mutated peptide sequences at the site of these glycosylations, as well as high titers of neutralizing activity to the mutant viruses (E. Yuste et al., J. Virol. 82:12472–12486, 2008). However, whether antibodies that recognize these underlying peptides have neutralizing activity has not been directly demonstrated. Here we describe the isolation and characterization of three gp41-specific monoclonal antibodies (4G8, 6G8, and 7D6) from one of these mutant-infected monkeys. All three antibodies reacted with mutant gp41 from viral particles and also with peptides corresponding to mutated sequences. Slight differences in peptide specificities were observed among the three antibodies. Sequence analysis revealed that the heavy chains of all three antibodies were derived from the same germ line heavy-chain segment (IGHV4-59*01), but they all had very different sequences in complementarity-determining region 3. The light chains of all three antibodies were very closely related to one another. All three antibodies had neutralizing activity to mutant viruses deficient in gp41 carbohydrate attachment, but they did not neutralize the parental SIVmac239. These results demonstrate unambiguously that antibodies with specificity for peptide sequences underlying gp41 carbohydrates can effectively neutralize SIV when these carbohydrates are absent. However, the presence of these gp41 carbohydrates effectively shields the virus from antibodies that would otherwise neutralize viral infectivity
Antibody Fragments Humanization: Beginning with the End in Mind
International audienceMolecular engineering has made possible to reformat monoclonal antibodies into smaller antigen-binding structures like scFvs, diabodies, Fabs with new potential in vivo applications because they do not induce Fc-mediated functions. However, most of these molecules are from rodent origin. As a consequence, they are immunogenic and approval for administration to humans requires prior humanization. Today, there is no well-identified strategy to create recombinant humanized antibody V-domains that preserve the antigen-binding characteristics of the parental antibody associated with high stability and solubility. Here, we propose a strategy that consists in grafting CDRs onto properly chosen human antibody frameworks in order to reduce immunogenicity. A flowchart indicates the way to proceed in order to introduce an internal affinity purification tag while structural refinements are proposed to maintain antigen-binding characteristics. The best humanized candidates are identified through selection steps including in silico analysis, research scale production followed by early functional evaluation, purification assays, aggregation, and stability assessment
Host Anti-antibody Responses Following Adeno-associated Virus–mediated Delivery of Antibodies Against HIV and SIV in Rhesus Monkeys
Long-term delivery of antibodies against the human immunodeficiency virus (HIV) using adeno-associated virus (AAV) vectors is a promising approach for the prevention or treatment of HIV infection. However, host antibody responses to the delivered antibody are a serious concern that could significantly limit the applicability of this approach. Here, we describe the dynamics and characteristics of the anti-antibody responses in monkeys that received either rhesus anti-simian immunodeficiency virus (SIV) antibodies (4L6 or 5L7) in prevention trials or a combination of rhesusized human anti-HIV antibodies (1NC9/8ANC195/3BNC117 or 10–1074/10E8/3BNC117) in therapy trials, all employing AAV1 delivery of IgG1. Eight out of eight monkeys that received the anti-HIV antibodies made persisting antibody responses to all three antibodies in the mix. Six out of six uninfected monkeys that received the anti-SIV antibody 4L6 and three out of six of those receiving anti-SIV antibody 5L7 also generated anti-antibodies. Both heavy and light chains were targeted, predominantly or exclusively to variable regions, and reactivity to complementarity-determining region (CDR)-H3 peptide could be demonstrated. There was a highly significant correlation of the magnitude of anti-antibody responses with the degree of sequence divergence of the delivered antibody from germline. Our results suggest the need for effective strategies to counteract the problem of antibody responses to AAV-delivered antibodies
Mutation Pattern of Paired Immunoglobulin Heavy and Light Variable Domains in Chronic Lymphocytic Leukemia B Cells
B-cell chronic lymphocytic leukemia (CLL) patients display leukemic clones bearing either germline or somatically mutated immunoglobulin heavy variable (IGHV ) genes. Most information on CLL immunoglobulins (Igs), such as the definition of stereotyped B-cell receptors (BCRs), was derived from germline unmutated Igs. In particular, detailed studies on the distribution and nature of mutations in paired heavy- and light-chain domains of CLL clones bearing mutated Igs are lacking. To address the somatic hyper-mutation dynamics of CLL Igs, we analyzed the mutation pattern of paired IGHV–diversity-joining (IGHV-D-J ) and immunoglobulin kappa/lambda variable-joining (IGK/LV-J ) rearrangements of 193 leukemic clones that displayed ≥2% mutations in at least one of the two immunoglobulin variable (IGV ) genes (IGHV and/or IGK/LV ). The relationship between the mutation frequency in IGHV and IGK/LV complementarity determining regions (CDRs) and framework regions (FRs) was evaluated by correlation analysis. Replacement (R) mutation frequency within IGK/LV chain CDRs correlated significantly with mutation frequency of paired IGHV CDRs in λ but not κ isotype CLL clones. CDRs of IGKV-J rearrangements displayed a lower percentage of R mutations than IGHVs. The frequency/pattern of mutations in kappa CLL Igs differed also from that in κ-expressing normal B cells described in the literature. Instead, the mutation frequency within the FRs of IGHV and either IGKV or IGLV was correlated. Notably, the amount of diversity introduced by replaced amino acids was comparable between IGHVs and IGKVs. The data indicate a different mutation pattern between κ and λ isotype CLL clones and suggest an antigenic selection that, in κ samples, operates against CDR variation