315 research outputs found

    Triplet repeats form secondary structures that escape DNA repair in yeast

    Get PDF
    Several human neurodegenerative diseases result from expansion of CTG/CAG or CGG/CCG triplet repeats. The finding that single-stranded CNG repeats form hairpin-like structures in vitro has led to the hypothesis that DNA secondary structure formation is an important component of the expansion mechanism. We show that single-stranded DNA loops containing 10 CTG/CAG or CGG/CCG repeats are inefficiently repaired during meiotic recombination in Saccharomyces cerevisiae. Comparisons of the repair of DNA loops with palindromic and nonpalindromic sequences suggest that this inefficient repair reflects the ability of these sequences to form hairpin structures in vivo

    Friedreich's Ataxia (GAA)n•(TTC)n Repeats Strongly Stimulate Mitotic Crossovers in Saccharomyces cerevisae

    Get PDF
    Expansions of trinucleotide GAA•TTC tracts are associated with the human disease Friedreich's ataxia, and long GAA•TTC tracts elevate genome instability in yeast. We show that tracts of (GAA)230•(TTC)230 stimulate mitotic crossovers in yeast about 10,000-fold relative to a “normal” DNA sequence; (GAA)n•(TTC)n tracts, however, do not significantly elevate meiotic recombination. Most of the mitotic crossovers are associated with a region of non-reciprocal transfer of information (gene conversion). The major class of recombination events stimulated by (GAA)n•(TTC)n tracts is a tract-associated double-strand break (DSB) that occurs in unreplicated chromosomes, likely in G1 of the cell cycle. These findings indicate that (GAA)n•(TTC)n tracts can be a potent source of loss of heterozygosity in yeast

    A Fine-Structure Map of Spontaneous Mitotic Crossovers in the Yeast Saccharomyces cerevisiae

    Get PDF
    Homologous recombination is an important mechanism for the repair of DNA damage in mitotically dividing cells. Mitotic crossovers between homologues with heterozygous alleles can produce two homozygous daughter cells (loss of heterozygosity), whereas crossovers between repeated genes on non-homologous chromosomes can result in translocations. Using a genetic system that allows selection of daughter cells that contain the reciprocal products of mitotic crossing over, we mapped crossovers and gene conversion events at a resolution of about 4 kb in a 120-kb region of chromosome V of Saccharomyces cerevisiae. The gene conversion tracts associated with mitotic crossovers are much longer (averaging about 12 kb) than the conversion tracts associated with meiotic recombination and are non-randomly distributed along the chromosome. In addition, about 40% of the conversion events have patterns of marker segregation that are most simply explained as reflecting the repair of a chromosome that was broken in G1 of the cell cycle

    Prevalence and dynamics of ribosomal DNA micro-heterogeneity are linked to population history in two contrasting yeast species

    Get PDF
    Despite the considerable number and taxonomic breadth of past and current genome sequencing projects, many of which necessarily encompass the ribosomal DNA, detailed information on the prevalence and evolutionary significance of sequence variation in this ubiquitous genomic region are severely lacking. Here, we attempt to address this issue in two closely related yet contrasting yeast species, the baker's yeast Saccharomyces cerevisiae and the wild yeast Saccharomyces paradoxus. By drawing on existing datasets from the Saccharomyces Genome Resequencing Project, we identify a rich seam of ribosomal DNA sequence variation, characterising 1,068 and 970 polymorphisms in 34 S. cerevisiae and 26 S. paradoxus strains respectively. We discover the two species sets exhibit distinct mutational profiles. Furthermore, we show for the first time that unresolved rDNA sequence variation resulting from imperfect concerted evolution of the ribosomal DNA region follows a U-shaped allele frequency distribution in each species, similar to loci that evolve under non-concerted mechanisms but arising through rather different evolutionary processes. Finally, we link differences between the shapes of these allele frequency distributions to the two species' contrasting population histories

    The histone methylase Set2p and the histone deacetylase Rpd3p repress meiotic recombination at the HIS4 meiotic recombination hotspot in Saccharomyces cerevisiae

    Get PDF
    The rate of meiotic recombination in the yeast Saccharomyces cerevisiae varies widely in different regions of the genome with some genes having very high levels of recombination (hotspots). A variety of experiments done in yeast suggest that hotspots are a feature of chromatin structure rather than a feature of primary DNA sequence. We examined the effects of mutating a variety of enzymes that affect chromatin structure on the recombination activity of the well-characterized HIS4 hotspot including the Set2p and Dot1p histone methylases, the Hda1p and Rpd3p histone deacetylases, the Sin4p global transcription regulator, and a deletion of one of the two copies of the genes encoding histone H3–H4. Loss of Set2p or Rpd3p substantially elevated HIS4 hotspot activity, and loss of Hda1p had a smaller stimulatory effect; none of the other alterations had a significant effect. The increase of HIS4 hotspot activity in set2 and rpd3 strains is likely to be related to the recent finding that histone H3 methylation by Set2p directs deacetylation of histones by Rpd3p

    Superhelical Duplex Destabilization and the Recombination Position Effect

    Get PDF
    The susceptibility to recombination of a plasmid inserted into a chromosome varies with its genomic position. This recombination position effect is known to correlate with the average G+C content of the flanking sequences. Here we propose that this effect could be mediated by changes in the susceptibility to superhelical duplex destabilization that would occur. We use standard nonparametric statistical tests, regression analysis and principal component analysis to identify statistically significant differences in the destabilization profiles calculated for the plasmid in different contexts, and correlate the results with their measured recombination rates. We show that the flanking sequences significantly affect the free energy of denaturation at specific sites interior to the plasmid. These changes correlate well with experimentally measured variations of the recombination rates within the plasmid. This correlation of recombination rate with superhelical destabilization properties of the inserted plasmid DNA is stronger than that with average G+C content of the flanking sequences. This model suggests a possible mechanism by which flanking sequence base composition, which is not itself a context-dependent attribute, can affect recombination rates at positions within the plasmid

    Gene Copy-Number Variation in Haploid and Diploid Strains of the Yeast Saccharomyces cerevisiae

    Get PDF
    The increasing ability to sequence and compare multiple individual genomes within a species has highlighted the fact that copy-number variation (CNV) is a substantial and underappreciated source of genetic diversity. Chromosome-scale mutations occur at rates orders of magnitude higher than base substitutions, yet our understanding of the mechanisms leading to CNVs has been lagging. We examined CNV in a region of chromosome 5 (chr5) in haploid and diploid strains of Saccharomyces cerevisiae. We optimized a CNV detection assay based on a reporter cassette containing the SFA1 and CUP1 genes that confer gene dosage-dependent tolerance to formaldehyde and copper, respectively. This optimized reporter allowed the selection of low-order gene amplification events, going from one copy to two copies in haploids and from two to three copies in diploids. In haploid strains, most events involved tandem segmental duplications mediated by nonallelic homologous recombination between flanking direct repeats, primarily Ty1 elements. In diploids, most events involved the formation of a recurrent nonreciprocal translocation between a chr5 Ty1 element and another Ty1 repeat on chr13. In addition to amplification events, a subset of clones displaying elevated resistance to formaldehyde had point mutations within the SFA1 coding sequence. These mutations were all dominant and are proposed to result in hyperactive forms of the formaldehyde dehydrogenase enzyme

    Genomic Structure of and Genome-Wide Recombination in the Saccharomyces cerevisiae S288C Progenitor Isolate EM93

    Get PDF
    The diploid isolate EM93 is the main ancestor to the widely used Saccharomyces cerevisiae haploid laboratory strain, S288C. In this study, we generate a high-resolution overview of the genetic differences between EM93 and S288C. We show that EM93 is heterozygous for >45,000 polymorphisms, including large sequence polymorphisms, such as deletions and a Saccharomyces paradoxus introgression. We also find that many large sequence polymorphisms (LSPs) are associated with Ty-elements and sub-telomeric regions. We identified 2,965 genetic markers, which we then used to genotype 120 EM93 tetrads. In addition to deducing the structures of all EM93 chromosomes, we estimate that the average EM93 meiosis produces 144 detectable recombination events, consisting of 87 crossover and 31 non-crossover gene conversion events. Of the 50 polymorphisms showing the highest levels of non-crossover gene conversions, only three deviated from parity, all of which were near heterozygous LSPs. We find that non-telomeric heterozygous LSPs significantly reduce meiotic recombination in adjacent intervals, while sub-telomeric LSPs have no discernable effect on recombination. We identified 203 recombination hotspots, relatively few of which are hot for both non-crossover gene conversions and crossovers. Strikingly, we find that recombination hotspots show limited conservation. Some novel hotspots are found adjacent to heterozygous LSPs that eliminate other hotspots, suggesting that hotspots may appear and disappear relatively rapidly

    Family Size Evolution in Drosophila Chemosensory Gene Families: A Comparative Analysis with a Critical Appraisal of Methods

    Get PDF
    Gene turnover rates and the evolution of gene family sizes are important aspects of genome evolution. Here, we use curated sequence data of the major chemosensory gene families from Drosophila-the gustatory receptor, odorant receptor, ionotropic receptor, and odorant-binding protein families-to conduct a comparative analysis among families, exploring different methods to estimate gene birth and death rates, including an ad hoc simulation study. Remarkably, we found that the state-of-the-art methods may produce very different rate estimates, which may lead to disparate conclusions regarding the evolution of chemosensory gene family sizes in Drosophila. Among biological factors, we found that a peculiarity of D. sechellia's gene turnover rates was a major source of bias in global estimates, whereas gene conversion had negligible effects for the families analyzed herein. Turnover rates vary considerably among families, subfamilies, and ortholog groups although all analyzed families were quite dynamic in terms of gene turnover. Computer simulations showed that the methods that use ortholog group information appear to be the most accurate for the Drosophila chemosensory families. Most importantly, these results reveal the potential of rate heterogeneity among lineages to severely bias some turnover rate estimation methods and the need of further evaluating the performance of these methods in a more diverse sampling of gene families and phylogenetic contexts. Using branch-specific codon substitution models, we find further evidence of positive selection in recently duplicated genes, which attests to a nonneutral aspect of the gene birth-and-death process
    corecore