395 research outputs found

    Comparative genomics of <em>Fusarium oxysporum</em> f. sp. <em>melonis</em> reveals the secreted protein recognized by the <em>Fom-2</em> resistance gene in melon

    Get PDF
    Development of resistant crops is the most effective way to control plant diseases to safeguard food and feed production. Disease resistance is commonly based on resistance genes, which generally mediate the recognition of small proteins secreted by invading pathogens. These proteins secreted by pathogens are called 'avirulence' proteins. Their identification is important for being able to assess the usefulness and durability of resistance genes in agricultural settings. We have used genome sequencing of a set of strains of the melon wilt fungus Fusarium oxysporum f. sp. melonis (Fom), bioinformatics-based genome comparison and genetic transformation of the fungus to identify AVRFOM2, the gene that encodes the avirulence protein recognized by the melon Fom-2 gene. Both an unbiased and a candidate gene approach identified a single candidate for the AVRFOM2 gene. Genetic complementation of AVRFOM2 in three different race 2 isolates resulted in resistance of Fom-2-harbouring melon cultivars. AvrFom2 is a small, secreted protein with two cysteine residues and weak similarity to secreted proteins of other fungi. The identification of AVRFOM2 will not only be helpful to select melon cultivars to avoid melon Fusarium wilt, but also to monitor how quickly a Fom population can adapt to deployment of Fom-2-containing cultivars in the field

    Suppression of Plant Resistance Gene-Based Immunity by a Fungal Effector

    Get PDF
    The innate immune system of plants consists of two layers. The first layer, called basal resistance, governs recognition of conserved microbial molecules and fends off most attempted invasions. The second layer is based on Resistance (R) genes that mediate recognition of effectors, proteins secreted by pathogens to suppress or evade basal resistance. Here, we show that a plant-pathogenic fungus secretes an effector that can both trigger and suppress R gene-based immunity. This effector, Avr1, is secreted by the xylem-invading fungus Fusarium oxysporum f.sp. lycopersici (Fol) and triggers disease resistance when the host plant, tomato, carries a matching R gene (I or I-1). At the same time, Avr1 suppresses the protective effect of two other R genes, I-2 and I-3. Based on these observations, we tentatively reconstruct the evolutionary arms race that has taken place between tomato R genes and effectors of Fol. This molecular analysis has revealed a hitherto unpredicted strategy for durable disease control based on resistance gene combinations

    Interfacial charge transfer in nanoscale polymer transistors

    Get PDF
    Interfacial charge transfer plays an essential role in establishing the relative alignment of the metal Fermi level and the energy bands of organic semiconductors. While the details remain elusive in many systems, this charge transfer has been inferred in a number of photoemission experiments. We present electronic transport measurements in very short channel (L<100L < 100 nm) transistors made from poly(3-hexylthiophene) (P3HT). As channel length is reduced, the evolution of the contact resistance and the zero-gate-voltage conductance are consistent with such charge transfer. Short channel conduction in devices with Pt contacts is greatly enhanced compared to analogous devices with Au contacts, consistent with charge transfer expectations. Alternating current scanning tunneling microscopy (ACSTM) provides further evidence that holes are transferred from Pt into P3HT, while much less charge transfer takes place at the Au/P3HT interface.Comment: 19 preprint pages, 6 figure

    The Screening Effect of the Private Securities Litigation Reform Act

    Get PDF
    Prior research shows that the PSLRA increased the significance of merit-related factors, such as the presence of an accounting restatement or insider selling, in determining the incidence and outcomes of securities fraud class actions. (Johnson, Nelson, and Pritchard, 2007). This result, however, is consistent with two possible hypotheses. First, the PSLRA may have reduced solely the incidence of non-meritorious litigation. Second, the PSLRA may have changed the definition of merit, effectively precluding claims that would have survived and produced a settlement pre-PSLRA. This paper tests these alternative hypotheses. We find that pre-PSLRA claims that settled for nuisance value would be less likely to be filed under the PSLRA regime. We also find, however, that pre-PSLRA non-nuisance claims would be less likely to be filed post-PSLRA period. The latter result, which we refer to as the screening effect, is particularly pronounced for claims lacking obvious hard evidence indicia of fraud (an accounting restatement or an SEC investigation). This screening effect is stronger if the claims also lacked evidence of abnormal insider trading. By contrast, we find that pre-PSLRA claims with hard evidence or abnormal insider trading would be no less likely to be filed in the post-PSLRA period. We also examine the likelihood of settlement for pre-PSRLA claims if they had been filed in the post-PSLRA period, and find a similar screening effect for case outcomes. We conclude that Congress effectively changed the definition of merit in adopting the PSLRA, discouraging suits that would have produced a non-nuisance outcome prior to the law’s enactment

    Evolution of Linked Avirulence Effectors in Leptosphaeria maculans Is Affected by Genomic Environment and Exposure to Resistance Genes in Host Plants

    Get PDF
    Brassica napus (canola) cultivars and isolates of the blackleg fungus, Leptosphaeria maculans interact in a β€˜gene for gene’ manner whereby plant resistance (R) genes are complementary to pathogen avirulence (Avr) genes. Avirulence genes encode proteins that belong to a class of pathogen molecules known as effectors, which includes small secreted proteins that play a role in disease. In Australia in 2003 canola cultivars with the Rlm1 resistance gene suffered a breakdown of disease resistance, resulting in severe yield losses. This was associated with a large increase in the frequency of virulence alleles of the complementary avirulence gene, AvrLm1, in fungal populations. Surprisingly, the frequency of virulence alleles of AvrLm6 (complementary to Rlm6) also increased dramatically, even though the cultivars did not contain Rlm6. In the L. maculans genome, AvrLm1 and AvrLm6 are linked along with five other genes in a region interspersed with transposable elements that have been degenerated by Repeat-Induced Point (RIP) mutations. Analyses of 295 Australian isolates showed deletions, RIP mutations and/or non-RIP derived amino acid substitutions in the predicted proteins encoded by these seven genes. The degree of RIP mutations within single copy sequences in this region was proportional to their proximity to the degenerated transposable elements. The RIP alleles were monophyletic and were present only in isolates collected after resistance conferred by Rlm1 broke down, whereas deletion alleles belonged to several polyphyletic lineages and were present before and after the resistance breakdown. Thus, genomic environment and exposure to resistance genes in B. napus has affected the evolution of these linked avirulence genes in L. maculans

    SnTox3 Acts in Effector Triggered Susceptibility to Induce Disease on Wheat Carrying the Snn3 Gene

    Get PDF
    The necrotrophic fungus Stagonospora nodorum produces multiple proteinaceous host-selective toxins (HSTs) which act in effector triggered susceptibility. Here, we report the molecular cloning and functional characterization of the SnTox3-encoding gene, designated SnTox3, as well as the initial characterization of the SnTox3 protein. SnTox3 is a 693 bp intron-free gene with little obvious homology to other known genes. The predicted immature SnTox3 protein is 25.8 kDa in size. A 20 amino acid signal sequence as well as a possible pro sequence are predicted. Six cysteine residues are predicted to form disulfide bonds and are shown to be important for SnTox3 activity. Using heterologous expression in Pichia pastoris and transformation into an avirulent S. nodorum isolate, we show that SnTox3 encodes the SnTox3 protein and that SnTox3 interacts with the wheat susceptibility gene Snn3. In addition, the avirulent S. nodorum isolate transformed with SnTox3 was virulent on host lines expressing the Snn3 gene. SnTox3-disrupted mutants were deficient in the production of SnTox3 and avirulent on the Snn3 differential wheat line BG220. An analysis of genetic diversity revealed that SnTox3 is present in 60.1% of a worldwide collection of 923 isolates and occurs as eleven nucleotide haplotypes resulting in four amino acid haplotypes. The cloning of SnTox3 provides a fundamental tool for the investigation of the S. nodorum–wheat interaction, as well as vital information for the general characterization of necrotroph–plant interactions

    CaZF, a Plant Transcription Factor Functions through and Parallel to HOG and Calcineurin Pathways in Saccharomyces cerevisiae to Provide Osmotolerance

    Get PDF
    Salt-sensitive yeast mutants were deployed to characterize a gene encoding a C2H2 zinc finger protein (CaZF) that is differentially expressed in a drought-tolerant variety of chickpea (Cicer arietinum) and provides salinity-tolerance in transgenic tobacco. In Saccharomyces cerevisiae most of the cellular responses to hyper-osmotic stress is regulated by two interconnected pathways involving high osmolarity glycerol mitogen-activated protein kinase (Hog1p) and Calcineurin (CAN), a Ca2+/calmodulin-regulated protein phosphatase 2B. In this study, we report that heterologous expression of CaZF provides osmotolerance in S. cerevisiae through Hog1p and Calcineurin dependent as well as independent pathways. CaZF partially suppresses salt-hypersensitive phenotypes of hog1, can and hog1can mutants and in conjunction, stimulates HOG and CAN pathway genes with subsequent accumulation of glycerol in absence of Hog1p and CAN. CaZF directly binds to stress response element (STRE) to activate STRE-containing promoter in yeast. Transactivation and salt tolerance assays of CaZF deletion mutants showed that other than the transactivation domain a C-terminal domain composed of acidic and basic amino acids is also required for its function. Altogether, results from this study suggests that CaZF is a potential plant salt-tolerance determinant and also provide evidence that in budding yeast expression of HOG and CAN pathway genes can be stimulated in absence of their regulatory enzymes to provide osmotolerance
    • …
    corecore